
IBM Tivoli NetView for z/OS
Version 6 Release 2 Modification 1

Customization Guide

SC27-2849-04

IBM

IBM Tivoli NetView for z/OS
Version 6 Release 2 Modification 1

Customization Guide

SC27-2849-04

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 187.

This edition applies to version 6, release 2, modification 1 of IBM Tivoli NetView for z/OS (product number
5697-NV6) and to all subsequent versions, releases, and modifications until otherwise indicated in new editions.

This edition replaces SC27-2849-03.

© Copyright IBM Corporation 1997, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures . vii

About this publication . ix
Intended audience . ix
Publications . ix

IBM Tivoli NetView for z/OS library . ix
Related publications . xi
Accessing terminology online . xi
Using NetView for z/OS online help . xii
Accessing publications online . xii
Ordering publications . xii

Accessibility . xiii
Service Management Connect . xiii
Tivoli technical training . xiii
Tivoli user groups . xiii
Downloads . xiii
Support information . xiv
Conventions used in this publication . xiv

Revision codes . xv
Typeface conventions . xv
Operating system-dependent variables and paths. xv
Syntax diagrams . xvi

Chapter 1. Designing Functions . 1
Customization Areas. 1

Functions to Consider before Making Modifications . 3
Finding Customization Information. 3
Collecting Data . 5
Data Storage and Recording . 7
Operator Presentation . 7

Tasks . 7
NetView Program as a System Application Program . 8
NetView Program Tasks . 8
Program Activity within a Task . 9
Queuing Work to NetView Program Tasks . 10
Message and Command Buffers . 10
Immediate Commands . 10
Long-Running Commands . 10
Data Services Commands . 11

Defining User-Written Programs on the Host: Exits and Commands 11
Installation Exit Programs . 11
Command Processors and Command Lists . 12

Adding Optional Tasks to the NetView Program . 14
Choosing a Language . 14

Input and Output . 14
Performance . 14
Stability . 15
Testing . 15
Speed of Implementation . 15
REXX Versus the NetView Command List Language . 15
Language Choices by Function . 16
Logging . 16
Cross-Reference for Message and Environment Functions 17

Customizing PF Keys and Immediate Message Line . 25
Modifying CNMKEYS . 26

© Copyright IBM Corp. 1997, 2015 iii

Chapter 2. Customizing the NetView Command Facility Panel 27
Using a Screen Format Definition . 27
Screen Format Definition Statements . 27
Message Color and Highlighting . 30

Chapter 3. Using the VIEW Command . 31
Creating Full-Screen Panels . 31

General Help Fields . 32
Coding the VIEW Command . 35
Return Codes from VIEW and BROWSE. 37
Displaying VIEW Return Codes with SHOWCODE . 38
Controlling Color and Highlighting of Fields . 38

Attribute Symbols . 39
Displaying Special Attributes . 40
Attribute Variables . 40

Displaying Variables in Source Panels . 43
Compound Symbols . 45

Issuing Commands from Command Procedures . 46
Creating a Rollable Component with VIEW. 47

Full-Screen Input Capabilities . 50
Returning Command Line Input . 56
Using PF Keys and Subcommands with VIEW . 57

Using PF Keys and Subcommands with the NOINPUT Option 57
Using PF Keys and Subcommands with the INPUT Option 58

Dynamic Update Capabilities . 59
Sample of Panel Updating . 60
Changing Colors in Browse . 62

Chapter 4. Modifying and Creating Online Help Information 65
Locating Help Source Files . 65

View-Based Help . 66
Window-Based Help . 66

Copying and Changing Help Source Files . 69
Storing Help Source Files . 70
HELPMAP Facility . 70
Displaying New Help Panels . 71

Chapter 5. Customizing Session Monitor Sense Descriptions 73
Session Monitor Sense Codes . 73
Examples . 74

Chapter 6. Customizing Hardware Monitor Displayed Data 77
Modifying Hardware Monitor Nongeneric Panels. 77

Determining a Panel Name . 77
Changing Panel Text . 80

Nongeneric Alert Messages . 81
Using the ACTION Command List . 82
Overlaying Recommended Action Numbers . 82

Modifying BNJDNUMB, BNJDNAME, and BNJwwwww 83
Changing Color and Highlighting for Hardware Monitor Panels. 86

Selecting the Color Map . 87
Modifying the Color Map . 87
Prompt Highlight Tokens . 90

Using NMVT Support for User-Written Programming . 91
User-Defined Alerts (Nongeneric) . 91
User-Defined Alerts (Generic) . 92
Building Generic Alert Panels . 93
Alerts-Dynamic Panel . 95
Recommended Action for Selected Event Panel . 96
Event Detail Panel . 98

iv Customization Guide

Modifying Generic Code Point Tables . 100
Adding or Modifying Resource Types . 103

Chapter 7. Modifying Network Asset Management Command Lists 105
VPD Collection from a Single PU. 106
VPD Collection from a Single NetView Domain . 106
Focal Point VPD Collection . 107
Customization Considerations . 108

Chapter 8. Customizing the Event/Automation Service. 109
Event/Automation Service: Overview . 109
Starting the Event/Automation Service . 110

Customizing the Initialization of the Event/Automation Service 110
Defaults for Configurable Settings . 111
Customizing the Event/Automation Startup Parameters 115
Customizing the Event/Automation Service Configuration Files 118
Event/Automation Service Output . 118
Event/Automation Service Output Log Names . 119
Types of Event/Automation Service Output Data . 120
Format of Event/Automation Service Output Data . 121
Customizing Alert and Message Routing from the NetView program. 122
Running More Than One Event/Automation Service . 122

Advanced Customization - Translating Data . 123
Class Definition Statement Files . 123
Encoding Incoming Event Data . 124
Alert Adapter Service, Confirmed Alert Adapter Service, and Alert-to-Trap Service Data Encoding 125
Alert-to-Trap Service Data Encoding. 128
Trap-to-Alert Service Data Encoding. 128
Event Receiver Service Data Encoding . 129
SELECT Segment of a Class Definition Statement . 130
FETCH Segment of a Class Definition Statement . 132
MAP Segment of a Class Definition Statement . 133
Message Format Files. 135

Event Receiver Post-CDS Processing. 141
Input Attribute List . 141
Output Pseudo Event. 142
Translating ASCII Text Data . 154
Translating SNMP Non-String Data Types . 155

Trap-to-Alert Post-CDS Processing . 158
Advanced Customization - Trap-to-Alert Forwarding Daemon 158
Detailed Example for Trap-to-Alert Conversion . 159

Alert-to-Trap Post-CDS Processing . 165

Chapter 9. NetView Instrumentation . 167
Considerations . 167
Customization . 167
Starting and Stopping Instrumentation . 169
Customizing the IBM Tivoli Enterprise Console . 170
ACB Monitor Customization . 170

Parts . 171
Defining a Focal Point . 171
Defining an Entry Point . 172
Starting the VTAM ACB Monitor . 173
Stopping the VTAM ACB Monitor . 173

Chapter 10. Designing HTML Files for the NetView Web Server 175
Referencing Files and Commands . 175

Understanding the Base URL . 175
Adding Tasks and Links to the Portfolio . 175
Using REXX to Generate HTML . 176

Contents v

Appendix A. Color Maps for Hardware Monitor Panels. 177

Appendix B. NetView Macros and Control Blocks 181
General-Use Programming Interface Control Blocks and Include Files 181
Product-Sensitive Programming Interfaces . 185

Notices . 187
Programming Interfaces . 189
Trademarks . 189
Privacy policy considerations . 189

Index . 191

vi Customization Guide

Figures

1. Structural Overview of the Command Facility . 9
2. Program Design Example for DST Function . 13
3. Excerpt from CNMKEYS Sample to Set PF Keys . 26
4. NetView Message Panel . 28
5. Example of Source for General Help Information . 32
6. Example of a REXX Program Requesting Values of Variables for a VIEW 46
7. VIEWICCOL and VIEWICROW Examples . 51
8. Source for First Panel with Input-Capable Variables and Command Line 53
9. Source for Second Panel with Command Line Only . 53

10. Display Panel of Component with Variables Replaced by REXX Command List 56
11. Display Panel of Component . 56
12. RESDYN Command List Output Example . 61
13. CNMSRESP Source Panel Text . 61
14. Example of Using the SHOWDATA Command to Locate Help Source Files 66
15. Example of Source for Message and Command Help Information 67
16. Example of Using :IF DTYPE= and :LINK. 69
17. Example of the HELPMAP . 71
18. CNMB08B Sense Code Help . 74
19. Recommended Action Panel for Selected Event . 83
20. Sample BNJwwwww User-Defined Table . 86
21. Sample Generic Alert Record. 94
22. Sample of Alerts-Dynamic Panel . 95
23. Sample of Recommended Action for a Selected Event Panel 96
24. Sample of Event Detail Panel (Page 1). 98
25. Sample of Event Detail Panel (Page 2). 98
26. VPD Focal Point NetView Program . 107

© Copyright IBM Corp. 1997, 2015 vii

viii Customization Guide

About this publication

The IBM® Tivoli® NetView® for z/OS® product provides advanced capabilities that
you can use to maintain the highest degree of availability of your complex,
multi-platform, multi-vendor networks and systems from a single point of control.
This publication, the IBM Tivoli NetView for z/OS Customization Guide, describes the
parts of the NetView program that you can customize and points you to sources of
related information.

Intended audience
This publication is for system programmers who customize the NetView program.

Publications
This section lists publications in the IBM Tivoli NetView for z/OS library and
related documents. It also describes how to access Tivoli publications online and
how to order Tivoli publications.

IBM Tivoli NetView for z/OS library
The following documents are available in the IBM Tivoli NetView for z/OS library:
v Administration Reference, SC27-2869, describes the NetView program definition

statements required for system administration.
v Application Programmer's Guide, SC27-2870, describes the NetView

program-to-program interface (PPI) and how to use the NetView application
programming interfaces (APIs).

v Automation Guide, SC27-2846, describes how to use automated operations to
improve system and network efficiency and operator productivity.

v Command Reference Volume 1 (A-N), SC27-2847, and Command Reference Volume 2
(O-Z), SC27-2848, describe the NetView commands, which can be used for
network and system operation and in command lists and command procedures.

v Customization Guide, SC27-2849, describes how to customize the NetView product
and points to sources of related information.

v Data Model Reference, SC27-2850, provides information about the Graphic
Monitor Facility host subsystem (GMFHS), SNA topology manager, and
MultiSystem Manager data models.

v Installation: Configuring Additional Components, GC27-2851, describes how to
configure NetView functions beyond the base functions.

v Installation: Configuring Graphical Components, GC27-2852, describes how to install
and configure the NetView graphics components.

v Installation: Configuring the NetView Enterprise Management Agent, GC27-2853,
describes how to install and configure the NetView for z/OS Enterprise
Management Agent.

v Installation: Getting Started, GI11-9443, describes how to install and configure the
base NetView program.

v Installation: Migration Guide, GC27-2854, describes the new functions that are
provided by the current release of the NetView product and the migration of the
base functions from a previous release.

© Copyright IBM Corp. 1997, 2015 ix

v IP Management, SC27-2855, describes how to use the NetView product to manage
IP networks.

v Messages and Codes Volume 1 (AAU-DSI), GC27-2856, and Messages and Codes
Volume 2 (DUI-IHS), GC27-2857, describe the messages for the NetView product,
the NetView abend codes, the sense codes that are included in NetView
messages, and generic alert code points.

v Programming: Assembler, SC27-2858, describes how to write exit routines,
command processors, and subtasks for the NetView product using assembler
language.

v Programming: Pipes, SC27-2859, describes how to use the NetView pipelines to
customize a NetView installation.

v Programming: PL/I and C, SC27-2860, describes how to write command processors
and installation exit routines for the NetView product using PL/I or C.

v Programming: REXX and the NetView Command List Language, SC27-2861, describes
how to write command lists for the NetView product using the Restructured
Extended Executor language (REXX) or the NetView command list language.

v Resource Object Data Manager and GMFHS Programmer's Guide, SC27-2862,
describes the NetView Resource Object Data Manager (RODM), including how
to define your non-SNA network to RODM and use RODM for network
automation and for application programming.

v Security Reference, SC27-2863, describes how to implement authorization checking
for the NetView environment.

v SNA Topology Manager Implementation Guide, SC27-2864, describes planning for
and implementing the NetView SNA topology manager, which can be used to
manage subarea, Advanced Peer-to-Peer Networking, and TN3270 resources.

v Troubleshooting Guide, GC27-2865, provides information about documenting,
diagnosing, and solving problems that occur in the NetView product.

v Tuning Guide, SC27-2874, provides tuning information to help achieve certain
performance goals for the NetView product and the network environment.

v User's Guide: Automated Operations Network, SC27-2866, describes how to use the
NetView Automated Operations Network (AON) component, which provides
event-driven network automation, to improve system and network efficiency. It
also describes how to tailor and extend the automated operations capabilities of
the AON component.

v User's Guide: NetView, SC27-2867, describes how to use the NetView product to
manage complex, multivendor networks and systems from a single point.

v User's Guide: NetView Enterprise Management Agent, SC27-2876, describes how to
use the NetView Enterprise Management Agent.

v User's Guide: NetView Management Console, SC27-2868, provides information
about the NetView management console interface of the NetView product.

v Licensed Program Specifications, GC31-8848, provides the license information for
the NetView product.

v Program Directory for IBM Tivoli NetView for z/OS US English, GI11-9444, contains
information about the material and procedures that are associated with installing
the IBM Tivoli NetView for z/OS product.

v Program Directory for IBM Tivoli NetView for z/OS Japanese, GI11-9445, contains
information about the material and procedures that are associated with installing
the IBM Tivoli NetView for z/OS product.

x Customization Guide

v Program Directory for IBM Tivoli NetView for z/OS Enterprise Management Agent,
GI11-9446, contains information about the material and procedures that are
associated with installing the IBM Tivoli NetView for z/OS Enterprise
Management Agent.

Related publications
You can find additional product information on the NetView for z/OS web site at
http://www.ibm.com/software/tivoli/products/netview-zos/.

For information about the NetView Bridge function, see Tivoli NetView for OS/390
Bridge Implementation, SC31-8238-03 (available only in the V1R4 library).

Accessing terminology online
The IBM Terminology web site consolidates the terminology from IBM product
libraries in one convenient location. You can access the Terminology web site at
http://www.ibm.com/software/globalization/terminology/.

For NetView for z/OS terms and definitions, see the IBM Terminology web site.
The following terms are used in this library:

NetView
For the following products:
v Tivoli NetView for z/OS version 6 release 2 modification 1
v Tivoli NetView for z/OS version 6 release 2
v Tivoli NetView for z/OS version 6 release 1
v Tivoli NetView for z/OS version 5 release 4
v Tivoli NetView for z/OS version 5 release 3
v Tivoli NetView for OS/390® version 1 release 4
v NetView releases that are no longer supported

CNMCMD
For the CNMCMD member and the members that are included in it using
the %INCLUDE statement

CNMSTYLE
For the CNMSTYLE member and the members that are included in it using
the %INCLUDE statement

DSIOPF
For the DSIOPF member and the members that are included in it using the
%INCLUDE statement

PARMLIB
For SYS1.PARMLIB and other data sets in the concatenation sequence

MVS™ For z/OS operating systems

MVS element
For the base control program (BCP) element of the z/OS operating system

VTAM®

For Communications Server - SNA Services

IBM Tivoli Network Manager
For either of these products:
v IBM Tivoli Network Manager
v IBM Tivoli OMNIbus and Network Manager

IBM Tivoli Netcool®/OMNIbus
For either of these products:

About this publication xi

http://www.ibm.com/software/tivoli/products/netview-zos/
http://www.ibm.com/software/globalization/terminology/

v IBM Tivoli Netcool/OMNIbus
v IBM Tivoli OMNIbus and Network Manager

GDPS® Metro HyperSwap® Manager
For all the NetView for z/OS V6.2.1 books, NetView Monitoring for GDPS
V6.2.1 book, and IBM Tivoli System Automation for GDPS/PPRC
HyperSwap Manager with NetView book.

Note: The former name of GDPS Metro HyperSwap Manager is
GDPS/PPRC HyperSwap Manager.

GDPS Continuous Availability
For all the NetView for z/OS V6.2.1 books, NetView Monitoring for GDPS
V6.2.1 book, and IBM Tivoli System Automation for GDPS/PPRC
HyperSwap Manager with NetView book.

Note: The former name of GDPS Continuous Availability is
GDPS/Active-Active.

Unless otherwise indicated, topics to programs indicate the latest version and
release of the programs. If only a version is indicated, the topic is to all releases
within that version.

When a topic is made about using a personal computer or workstation, any
programmable workstation can be used.

Using NetView for z/OS online help
The following types of NetView for z/OS mainframe online help are available,
depending on your installation and configuration:
v General help and component information
v Command help
v Message help
v Sense code information
v Recommended actions

Accessing publications online
IBM posts publications for this and all other Tivoli products, as they become
available and whenever they are updated, to the Tivoli Documentation Central
website at https://www.ibm.com/developerworks/mydeveloperworks/wikis/
home/wiki/Tivoli%20Documentation%20Central

Note: If you print PDF documents on other than letter-sized paper, set the option
in the File > Print window that enables Adobe Reader to print letter-sized pages
on your local paper.

Ordering publications
You can order many Tivoli publications online at http://www.ibm.com/e-
business/linkweb/publications/servlet/pbi.wss

You can also order by telephone by calling one of these numbers:
v In the United States: 800-879-2755
v In Canada: 800-426-4968

xii Customization Guide

https://www.ibm.com/developerworks/mydeveloperworks/wikis/home/wiki/Tivoli%20Documentation%20Central
https://www.ibm.com/developerworks/mydeveloperworks/wikis/home/wiki/Tivoli%20Documentation%20Central
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss

In other countries, contact your software account representative to order Tivoli
publications. To locate the telephone number of your local representative, perform
the following steps:
1. Go to http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss.
2. Select your country from the list and click Go.
3. Click About this site to see an information page that includes the telephone

number of your local representative.

Accessibility
Accessibility features help users with a physical disability, such as restricted
mobility or limited vision, to use software products successfully. Standard shortcut
and accelerator keys are used by the product and are documented by the operating
system. Refer to the documentation provided by your operating system for more
information.

For additional information, see the Accessibility appendix in the User's Guide:
NetView.

Service Management Connect
Connect, learn, and share with Service Management professionals: product support
technical experts who provide their perspectives and expertise.

Access Service Management Connect at http://www.ibm.com/developerworks/
servicemanagement/z/. Use Service Management Connect in the following ways:
v Become involved with transparent development, an ongoing, open engagement

between other users and IBM developers of Tivoli products. You can access early
designs, sprint demonstrations, product roadmaps, and prerelease code.

v Connect one-on-one with the experts to collaborate and network about Tivoli
and the NetView community.

v Read blogs to benefit from the expertise and experience of others.
v Use wikis and forums to collaborate with the broader user community.

Tivoli technical training
For Tivoli technical training information, refer to the following IBM Tivoli
Education website at http://www.ibm.com/software/tivoli/education.

Tivoli user groups
Tivoli user groups are independent, user-run membership organizations that
provide Tivoli users with information to assist them in the implementation of
Tivoli Software solutions. Through these groups, members can share information
and learn from the knowledge and experience of other Tivoli users.

Downloads
Clients and agents, and several free NetView applications can be downloaded from
the NetView for z/OS support web site:

http://www.ibm.com/software/sysmgmt/products/support/
IBMTivoliNetViewforzOS.html

About this publication xiii

http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www.ibm.com/developerworks/servicemanagement/z/
http://www.ibm.com/developerworks/servicemanagement/z/
http://www.ibm.com/software/tivoli/education
http://www.ibm.com/software/sysmgmt/products/support/IBMTivoliNetViewforzOS.html
http://www.ibm.com/software/sysmgmt/products/support/IBMTivoliNetViewforzOS.html

After you open the Support Portal page, perform the following steps:
1. Scroll down to the Downloads section and click the view all link.
2. On the Downloads for NetView for z/OS page, check the Tool/Utility box in

the Filter by topic section on the left side.
3. Download the items based on your requirements.

These applications can help with the following tasks:
v Migrating customization parameters and initialization statements from earlier

releases to the CNMSTUSR member and command definitions from earlier
releases to the CNMCMDU member.

v Getting statistics for your automation table and merging the statistics with a
listing of the automation table

v Displaying the status of a job entry subsystem (JES) job or canceling a specified
JES job

v Sending alerts to the NetView program using the program-to-program interface
(PPI)

v Sending and receiving MVS commands using the PPI
v Sending Time Sharing Option (TSO) commands and receiving responses

Support information
If you have a problem with your IBM software, you want to resolve it quickly. IBM
provides the following ways for you to obtain the support you need:

Online
Access the Tivoli Software Support site at http://www.ibm.com/software/
sysmgmt/products/support/index.html?ibmprd=tivman. Access the IBM
Software Support site at http://www.ibm.com/software/support/
probsub.html.

IBM Support Assistant
The IBM Support Assistant is a free local software serviceability workbench
that helps you resolve questions and problems with IBM software
products. The Support Assistant provides quick access to support-related
information and serviceability tools for problem determination. To install
the Support Assistant software, go to http://www.ibm.com/software/
support/isa/.

Troubleshooting information
For more information about resolving problems with the NetView for z/OS
product, see the IBM Tivoli NetView for z/OS Troubleshooting Guide.
Additional support for the NetView for z/OS product is available through
the NetView user group on Yahoo at http://groups.yahoo.com/group/
NetView/. This support is for NetView for z/OS customers only, and
registration is required. This forum is monitored by NetView developers
who answer questions and provide guidance. When a problem with the
code is found, you are asked to open an official problem management
record (PMR) to obtain resolution.

Conventions used in this publication
This section describes the conventions that are used in this publication.

xiv Customization Guide

http://www.ibm.com/software/sysmgmt/products/support/index.html?ibmprd=tivman
http://www.ibm.com/software/sysmgmt/products/support/index.html?ibmprd=tivman
http://www.ibm.com/software/support/probsub.html
http://www.ibm.com/software/support/probsub.html
http://www.ibm.com/software/support/isa/
http://www.ibm.com/software/support/isa/
http://groups.yahoo.com/group/NetView/
http://groups.yahoo.com/group/NetView/

Revision codes
This publication uses the following revision codes, which are located in the left
margins:

| The pipe character | is used to indicate changes made for the December,
2014 modifications to the document.

Typeface conventions
This publication uses the following typeface conventions:

Bold

v Lowercase commands and mixed case commands that are otherwise
difficult to distinguish from surrounding text

v Interface controls (check boxes, push buttons, radio buttons, spin
buttons, fields, folders, icons, list boxes, items inside list boxes,
multicolumn lists, containers, menu choices, menu names, tabs, property
sheets), labels (such as Tip:, and Operating system considerations:)

v Keywords and parameters in text

Italic

v Citations (examples: titles of publications, diskettes, and CDs
v Words defined in text (example: a nonswitched line is called a

point-to-point line)
v Emphasis of words and letters (words as words example: “Use the word

that to introduce a restrictive clause.”; letters as letters example: “The
LUN address must start with the letter L.”)

v New terms in text (except in a definition list): a view is a frame in a
workspace that contains data.

v Variables and values you must provide: ... where myname represents...

Monospace

v Examples and code examples
v File names, programming keywords, and other elements that are difficult

to distinguish from surrounding text
v Message text and prompts addressed to the user
v Text that the user must type
v Values for arguments or command options

Operating system-dependent variables and paths
For workstation components, this publication uses the UNIX convention for
specifying environment variables and for directory notation.

When using the Windows command line, replace $variable with %variable% for
environment variables and replace each forward slash (/) with a backslash (\) in
directory paths. The names of environment variables are not always the same in
the Windows and UNIX environments. For example, %TEMP% in Windows
environments is equivalent to $TMPDIR in UNIX environments.

Note: If you are using the bash shell on a Windows system, you can use the UNIX
conventions.

About this publication xv

Syntax diagrams
The following syntax elements are shown in syntax diagrams. Read syntax
diagrams from left-to-right, top-to-bottom, following the horizontal line (the main
path).
v “Symbols”
v “Parameters”
v “Punctuation and parentheses”
v “Abbreviations” on page xvii

For examples of syntax, see “Syntax examples” on page xvii.

Symbols
The following symbols are used in syntax diagrams:

►► Marks the beginning of the command syntax.

► Indicates that the command syntax is continued.

| Marks the beginning and end of a fragment or part of the command
syntax.

►◄ Marks the end of the command syntax.

Parameters
The following types of parameters are used in syntax diagrams:

Required
Required parameters are shown on the main path.

Optional
Optional parameters are shown below the main path.

Default
Default parameters are shown above the main path. In parameter
descriptions, default parameters are underlined.

Syntax diagrams do not rely on highlighting, brackets, or braces. In syntax
diagrams, the position of the elements relative to the main syntax line indicates
whether an element is required, optional, or the default value.

When you issue a command, spaces are required between the parameters unless a
different separator, such as a comma, is specified in the syntax.

Parameters are classified as keywords or variables. Keywords are shown in
uppercase letters. Variables, which represent names or values that you supply, are
shown in lowercase letters and are either italicized or, in NetView help, displayed
in a differentiating color.

In the following example, the USER command is a keyword, the user_id parameter
is a required variable, and the password parameter is an optional variable.

►► USER user_id
password

►◄

Punctuation and parentheses
You must include all punctuation that is shown in the syntax diagram, such as
colons, semicolons, commas, minus signs, and both single and double quotation
marks.

xvi Customization Guide

When an operand can have more than one value, the values are typically enclosed
in parentheses and separated by commas. For a single value, the parentheses
typically can be omitted. For more information, see “Multiple operands or values”
on page xviii.

If a command requires positional commas to separate keywords and variables, the
commas are shown before the keywords or variables.

When examples of commands are shown, commas are also used to indicate the
absence of a positional operand. For example, the second comma indicates that an
optional operand is not being used:
COMMAND_NAME opt_variable_1,,opt_variable_3

You do not need to specify the trailing positional commas. Trailing positional and
non-positional commas either are ignored or cause a command to be rejected.
Restrictions for each command state whether trailing commas cause the command
to be rejected.

Abbreviations
Command and keyword abbreviations are listed in synonym tables after each
command description.

Syntax examples
The following examples show the different uses of syntax elements:
v “Required syntax elements”
v “Optional syntax elements”
v “Default keywords and values” on page xviii
v “Multiple operands or values” on page xviii
v “Syntax that is longer than one line” on page xviii
v “Syntax fragments” on page xviii

Required syntax elements:
Required keywords and variables are shown on the main syntax line. You must
code required keywords and variables.

►► REQUIRED_KEYWORD required_variable ►◄

A required choice (two or more items) is shown in a vertical stack on the main
path. The items are shown in alphanumeric order.

►► REQUIRED_OPERAND_OR_VALUE_1
REQUIRED_OPERAND_OR_VALUE_2

►◄

Optional syntax elements:
Optional keywords and variables are shown below the main syntax line. You can
choose not to code optional keywords and variables.

►►
OPTIONAL_OPERAND

►◄

A required choice (two or more items) is shown in a vertical stack below the main
path. The items are shown in alphanumeric order.

About this publication xvii

►►
OPTIONAL_OPERAND_OR_VALUE_1
OPTIONAL_OPERAND_OR_VALUE_2

►◄

Default keywords and values:
Default keywords and values are shown above the main syntax line in one of the
following ways:
v A default keyword is shown only above the main syntax line. You can specify

this keyword or allow it to default. The following syntax example shows the
default keyword KEYWORD1 above the main syntax line and the rest of the
optional keywords below the main syntax line.

v If an operand has a default value, the operand is shown both above and below
the main syntax line. A value below the main syntax line indicates that if you
specify the operand, you must also specify either the default value or another
value shown. If you do not specify the operand, the default value above the
main syntax line is used. The following syntax example shows the default values
for operand OPTION=* above and below the main syntax line.

►► COMMAND_NAME
KEYWORD1

KEYWORD1
KEYWORD2
KEYWORD3

OPTION=*

OPTION= *
VALUE1
VALUE2

►◄

Multiple operands or values:
An arrow returning to the left above a group of operands or values indicates that
more than one can be selected or that a single one can be repeated.

►►

▼

,

REPEATABLE_OPERAND_OR_VALUE_1
REPEATABLE_OPERAND_OR_VALUE_2
REPEATABLE_OPERAND_OR_VALUE_3

▼

,

KEYWORD= (value_n) ►◄

Syntax that is longer than one line:
If a diagram is longer than one line, each line that is to be continued ends with a
single arrowhead and the following line begins with a single arrowhead.

►► OPERAND1 OPERAND2 OPERAND3 OPERAND4 OPERAND5 OPERAND6 OPERAND7 ►

► OPERAND8 ►◄

Syntax fragments:
Some syntax diagrams contain syntax fragments, which are used for lengthy,
complex, or repeated sections of syntax. Syntax fragments follow the main
diagram. Each syntax fragment name is mixed case and is shown in the main
diagram and in the heading of the fragment. The following syntax example shows
a syntax diagram with two fragments that are identified as Fragment1 and
Fragment2.

xviii Customization Guide

►► COMMAND_NAME Fragment1
Fragment2

►◄

Fragment1

KEYWORD_A=valueA KEYWORD_B KEYWORD_C

Fragment2

KEYWORD_D KEYWORD_E=valueE KEYWORD_F

About this publication xix

xx Customization Guide

Chapter 1. Designing Functions

With the NetView program, you can manage complex, multivendor networks and
systems from a single point. This chapter describes what you must know before
making an addition or change to the NetView program, and shows some of the
facilities that you can use to customize tasks.

Customization Areas
Customizing the NetView program takes place at various stages of network and
system implementation. These topics are described in several NetView books. See
Table 1 on page 3 for the NetView books that contain more information on the
listed topics.

Alias names are used to communicate across networks. You can use alias names to
resolve conflicts when duplicate resource names exist in multiple networks. With
alias names, the name of the resource, such as a logical unit (LU), a class of
service, a source LU (SRCLU), or a LOGON mode table from the sending network,
is translated to a name that is unique to the receiving network. See IBM Tivoli
NetView for z/OS Installation: Getting Started for more information about how to
define alias names.

Filtering controls the amount of data presented to operators. Filtering also controls
the amount of data recorded in the network log. The NetView automation table
allows you to control the types of messages that each of your network operators
receives, and the amount of data recorded to message logs. See the IBM Tivoli
NetView for z/OS Automation Guide for descriptions of automation statements and
descriptions of how to use automation statements to suppress (filter) messages.

You can also filter event data that network resources send to the hardware monitor.
Recording filters control the information that is recorded in the hardware monitor's
database. Viewing filters determine the records that appear on each network
operator's terminal. You can find more information about hardware monitor
filtering by referring to the IBM Tivoli NetView for z/OS User's Guide: NetView or the
IBM Tivoli NetView for z/OS Automation Guide for a description of how to use
automation statements to set recording filters for specific events. You can also see
the NetView online help for the SRF and SVF commands.

Focal point support enables the NetView program to be defined as either a focal
point node or a distributed entry point node. A focal point is a central network
node that receives information from distributed entry point network nodes. The
information forwarded from the entry points to the focal point can be messages,
alerts, or MSUs. For more information on NetView focal point support, see the
IBM Tivoli NetView for z/OS Automation Guide.

You can use automation to implement automatic responses to events that occur in
your network. See the IBM Tivoli NetView for z/OS Automation Guide for more
information about defining NetView automation statements to improve the
productivity of your system operators and your network operators. For additional
information the NetView program's automation, see the IBM Tivoli NetView for z/OS
Automation Guide.

© Copyright IBM Corp. 1997, 2015 1

Use Generic alerts and code points to obtain problem determination support for
devices and applications in your network that the NetView program does not
automatically support. Chapter 6, “Customizing Hardware Monitor Displayed
Data,” on page 77 contains information on how to use the code point tables that
are provided with the NetView program and the user-defined code point tables to
build hardware monitor Alerts-Dynamic, Alerts-Static, Alerts-History, Event Detail,
and Most Recent Events panels.

National Language Support allows your operators to interact with the NetView
program in a language other than English. See IBM Tivoli NetView for z/OS
Installation: Configuring Additional Components for a description of how to write
your own message translations in any other supported language. The Japanese
National Language version provides a Japanese version of NetView panels and
messages.

You might need to consider operator control and security. To control who can gain
access to the NetView program and what effect an operator can have on your
network, you should consider some level of logon verification, command
authorization, and span of control. See the IBM Tivoli NetView for z/OS Security
Reference for a complete description of how to implement the different levels of
security verification available in the NetView program, how to limit the commands
an operator can issue (command authorization), and which part of the network's
resources an operator can control (span of control).

You can modify the color and format of the NetView command facility panel. See
Chapter 2, “Customizing the NetView Command Facility Panel,” on page 27 for
more information.

You can create or change panels for your online help, online message help,
NetView help desk, the hardware monitor, and any user-written, full-screen
applications. For a detailed explanation of how to create new panels or modify the
panels that are supplied with the NetView program for these components, see
Chapter 4, “Modifying and Creating Online Help Information,” on page 65 or
Chapter 6, “Customizing Hardware Monitor Displayed Data,” on page 77.

With sequential logging (sequential access method log support), you can write
variable length records to multiple user-defined logs. You can browse or print
these logs using your operating system facilities. For more information about
defining sequential log tasks, see the IBM Tivoli NetView for z/OS Installation:
Configuring Additional Components, IBM Tivoli NetView for z/OS Programming:
Assembler, or IBM Tivoli NetView for z/OS Programming: PL/I and C.

Session monitor data can be collected and kept in the session monitor database. To
control how much session data is collected and kept, customize several session
monitor definition statements. See theIBM Tivoli NetView for z/OS Installation:
Configuring Additional Components for more information. Defining performance
classes for the response time monitor (RTM) feature is also described in IBM Tivoli
NetView for z/OS Installation: Configuring Additional Components. Objectives and
boundaries are set for each performance class, and a performance class is then
chosen for a session.

User-written functions add new function to the NetView program or modify
existing ones. You might want to develop your own command lists and
user-written code. See the IBM Tivoli NetView for z/OS Programming: REXX and the
NetView Command List Language for an overview of writing command lists in REXX
or in NetView command list language to help you control your network and make

2 Customization Guide

the operators' jobs easier. You can find information about writing code such as
command procedures and installation exits in IBM Tivoli NetView for z/OS
Programming: PL/I and C. Information on writing command processors, installation
exit routines, and user subtasks in assembler language can be found in IBM Tivoli
NetView for z/OS Programming: Assembler.

The NetView Resource Object Data Manager (RODM) is a data cache that stores
network configuration and status information about system resources. With
RODM, you can automate network management functions associated with the
resources defined to RODM. In addition, you can write RODM applications to
perform other network management and automation tasks. See the IBM Tivoli
NetView for z/OS Resource Object Data Manager and GMFHS Programmer's Guide for
more information.

Functions to Consider before Making Modifications
To customize NetView functions, you can write your own command procedures or
modify one of the existing command procedures supplied by the NetView
program. Ways to modify existing functions include:
v Filtering or modifying the system management facility (SMF) records written by

the NetView program
v Providing a policy that routes operator messages
v Reformatting, analyzing, or editing operator messages
v Checking command authority

Additional functions you might want to add involve managing additional
components in your network, such as X.25 data network components or voice
network components. You can develop new applications and integrate them with
existing management functions to meet your requirements. Examples of these
user-defined functions include:
v Real-time monitoring of specific resources, applications, or components in your

network
v Collecting and recording additional SMF data for trend analysis or other data

reduction applications you need
v Providing additional response time problem detection and alerting
v Detecting different classes of line problems

Finding Customization Information
Table 1 lists customization topics and provides the name of the documentation that
includes information about that topic.

Table 1. Customization Topics and Documentation

Topic CGD GET OLH CLS PLC ASL AUT PIP ASR NUG ADV

Alias names X X

Command Facility
Screen Format X X X

Chapter 1. Designing Functions 3

Table 1. Customization Topics and Documentation (continued)

Topic CGD GET OLH CLS PLC ASL AUT PIP ASR NUG ADV

Automation X X X

Generic alerts X X

National Language
Support

X

Operator control:
Logon security
Command security
Span of control

X
X
X

Panels:
Hardware monitor
Help
Help desk
User-written

X
X
X
X

X
X
X
X

Sequential logging X X X X

Session monitor data:
Response time monitor
monitor
Session awareness

X

X

Suppressing:
Message
Hardware monitor

X X
X

X

User-written functions:
Command lists
User-written

programming
(PL/I, C)

User-written
programming

(assembler)
NetView Pipelines

X

X

X

X
X

4 Customization Guide

Table 1. Customization Topics and Documentation (continued)

Topic CGD GET OLH CLS PLC ASL AUT PIP ASR NUG ADV

Legend:

CGD IBM Tivoli NetView for z/OS Customization Guide

GET IBM Tivoli NetView for z/OS Installation: Getting Started

OLH NetView online help

CLS IBM Tivoli NetView for z/OS Programming: REXX and the NetView Command List Language

PLC IBM Tivoli NetView for z/OS Programming: PL/I and C

ASL IBM Tivoli NetView for z/OS Programming: Assembler

AUT IBM Tivoli NetView for z/OS Automation Guide

PIP IBM Tivoli NetView for z/OS Programming: Pipes

ASR IBM Tivoli NetView for z/OS Administration Reference

NUG IBM Tivoli NetView for z/OS User's Guide: NetView

ADV IBM Tivoli NetView for z/OS Installation: Configuring Additional Components

For information about customizing AON, see the IBM Tivoli NetView for z/OS User's
Guide: Automated Operations Network.

For information about customizing the NetView management console, see the IBM
Tivoli NetView for z/OS Programming: REXX and the NetView Command List Language.

For information about customizing the Tivoli NetView for z/OS Enterprise
Management Agent, see the IBM Tivoli NetView for z/OS User's Guide: NetView
Enterprise Management Agent.

Collecting Data
Typical sources for collecting data useful in customization procedures are:
v Installation exit interfaces provided in the NetView program
v System or NetView services that provide status, configuration, processing, or

authorization information
v Data files and network devices that are accessed using system or NetView

services
v Messages to operators indicating that important events are occurring in a system

or an application.

Installation Exits
Some NetView installation exits allow access to network management data.
Through these installation exits and user-written functions you can obtain the text
of operator commands, messages, and logons. Data that the NetView program
writes to VSAM files and to the SMF log, as well as data on the VTAM
communication network management (CNM) interface, can be accessed within
other NetView installation exits.

Reference: For more information about NetView installation exits, see the IBM
Tivoli NetView for z/OS Automation Guide, IBM Tivoli NetView for z/OS Programming:
Assembler, and IBM Tivoli NetView for z/OS Programming: PL/I and C.

Chapter 1. Designing Functions 5

Service Routines
System or NetView services give you access to information such as:
v System date and time
v Addresses of programs
v Addresses of named storage areas
v Valid NetView operators
v Operator span of control
v Values of command list variables

Reference: See the IBM Tivoli NetView for z/OS Programming: Assembler for
information about macros such as DSIDATIM, DSICES, DSIFIND, DSIQOS,
DSIQRS, and DSIKVS. See the IBM Tivoli NetView for z/OS Programming: PL/I and C
for information on service routines such as CNMINFC, CNMNAMS, CNMSCOP,
and CNMVARS.

Data Files
The NetView program provides specialized disk services and VSAM data services
to access network management data files. In addition to these, functions written in
a high-level language (HLL), such as PL/I and C, can invoke system allocation and
access methods to read from NetView partitioned data sets and request VSAM
I/O. CNM interface services also provide access to data coming from devices in
the network.

Using the NetView PIPE command, you can read data files using the QSAM and <
(From Disk) stages. Through the pipe facility, you also have access to VSAM data
using DSIVSAM and DSIVSMX. See the IBM Tivoli NetView for z/OS Programming:
Pipes for information about DSIVSAM and DSIVSMX.

REXX command lists can make use of the EXECIO command to read from and
write to sequential data sets or partitioned data set members.

Reference: See the IBM Tivoli NetView for z/OS Programming: PL/I and C for
information about VSAM and CNM interface services.

For more information about pipes, see the IBM Tivoli NetView for z/OS
Programming: Pipes.

See the IBM Tivoli NetView for z/OS Programming: REXX and the NetView Command
List Language for information on REXX file input and output. See the IBM Tivoli
NetView for z/OS Programming: Assembler for information on using DSIDKS for read
access to NetView data sets or files, DSIZVSMS for VSAM I/O, and DSIZCSMS for
CNM data services.

Operator Commands and Messages
You can issue operator commands within command procedures to request status
data. The resulting response messages containing the requested status data can be
trapped and processed in the command procedure. You can also process data in
other system and network messages in user-written command procedures that are
invoked through NetView automation.

Reference: See the IBM Tivoli NetView for z/OS Programming: REXX and the
NetView Command List Language for information on REXX and NetView command
list language message processing. See the IBM Tivoli NetView for z/OS Programming:

6 Customization Guide

PL/I and C for information on PL/I and C message processing. For more
information on writing automation options, see the IBM Tivoli NetView for z/OS
Automation Guide.

Data Storage and Recording
You can use NetView command procedures to store and retrieve data needed for
many user-written functions. Command procedures written in REXX, NetView
command list language, PL/I, or C can create, set, and read global and task
variables.

For permanent storage and for larger volumes of data, you can record certain
information in data files rather than naming it and storing it as a command list
variable. The NetView program allows you to record this data in a log. For
example, you can log activities of your applications along with system or network
activities that the NetView program is logging. You might want to produce a
separate log of data that you collect.

Reference: See the IBM Tivoli NetView for z/OS Installation: Configuring Additional
Components and “Choosing a Language” on page 14 in this book for information
on sequential logging.

Operator Presentation
You can customize or extend some of the NetView program's operator presentation
functions with the VIEW command or by modifying panels that some components
of the NetView system use to present data to operators. See Chapter 3, “Using the
VIEW Command,” on page 31 and Chapter 4, “Modifying and Creating Online
Help Information,” on page 65 for more information.

You can also use messages to present information to operators. With messages, the
data from user-written functions becomes subject to NetView automation
processing, allowing both automatic and manual operation of your functions.

Reference: See the IBM Tivoli NetView for z/OS Programming: Assembler for
information about DSIWCS, DSIMBS, DSIMQS, DSIPSS, and other message
services. See the IBM Tivoli NetView for z/OS Programming: PL/I and C for
information about using CNMSMSG. See the IBM Tivoli NetView for z/OS
Programming: REXX and the NetView Command List Language for descriptions of
REXX and NetView command list language write-to-operator (WTO) messages and
other message services.

You can also customize the NetView command facility panel. See Chapter 2,
“Customizing the NetView Command Facility Panel,” on page 27 for more
information.

Tasks
To write functional extensions to the NetView program, keep in mind that the
NetView design is based on z/OS.

Reference: The z/OS library is a good reference for explanations of how words
such as dispatch, task, and the names of various system services are used in this
section.

Chapter 1. Designing Functions 7

NetView Program as a System Application Program
The NetView program is organized into several parallel tasks, each one capable of
being dispatched separately in a multitasking environment. When any one task is
idle, any of the others is eligible to run. A system multitasking dispatcher uses the
NetView program's ATTACH system service to create each new task. When a task
has no more processing to do and is ready to become idle, the task calls the WAIT
system service. The POST system service takes a task out of an idle state, and
allows it to be dispatched when new input data is ready to be processed for that
task.

NetView Program Tasks
When the NetView program starts, its main task attaches several subtasks of
different types, depending on the function to be performed. Each different task
type determines the specific system interfaces and operator interfaces that are
available under that task, and the type of transactions you can perform.

Each operator station task (OST) supports one NetView operator identified by a
unique name. The operator identifiers (OPIDs) are defined in the NetView
parameter library. OPIDs are assigned to an OST when an automated operator,
known as an autotask, is activated using the AUTOTASK command, or when an
operator logs on using a VTAM-connected terminal.

Each NetView-NetView task (NNT) also supports an operator. This type of task is
used when the operator logs on to the NetView program from another NetView
program rather than from a terminal. The other NetView program can be running
in a different machine but must be connected through VTAM. The operator logs on
from the other NetView program using the START DOMAIN command.

Each hardcopy task (HCT) supports a 3287 printer connected through VTAM to
provide a hardcopy log for operators. See Figure 1 on page 9 for a structural
overview of the command facility and its task structure.

8 Customization Guide

There is only one primary program operator interface task (PPT) for each NetView
program. When VTAM is running, the PPT opens a special VTAM application
control block (ACB) for the VTAM programmable operator interface (POI) to
receive unsolicited data from VTAM.

Note: When the term VTAM is used in this book, it means the VTAM component
of the z/OS Communications Server.

Each optional task (OPT) must be defined by a TASK statement in the NetView
parameter library. The program module that runs for an OPT can be any program
that meets the specification for optional tasks described in “Adding Optional Tasks
to the NetView Program” on page 14.

Each data services task (DST) is a specific case of an optional task. See “Adding
Optional Tasks to the NetView Program” on page 14. The TASK statement for a
DST can name an initialization member in the NetView parameter library from
which statements are read to define parameters for the functions performed by the
specified DST.

Program Activity within a Task
After being activated, each type of NetView task waits for a request to perform a
specific unit of work. When that unit of work is complete, the task enters a normal

Main
Task
(MNT)

Operator
Station
Task
(OST)

Data
Services
Task
(DST)

NetView -
NetView
Task
(NNT)

Primary
POI
Task
(PPT)

Hard-Copy
Task
(HCT)

Unattended
Operator
Station
Task

Operator
Station

Hard-
Copy
Device

OST in
Another
Domain

Note: NetView can also run when VTAM is not active.

Console
Operator
Task

System
Consoles

DST

VTAM

VSAM

Figure 1. Structural Overview of the Command Facility

Chapter 1. Designing Functions 9

wait state. The task runs again when another request to perform a unit of work is
received. Each task uses a list of event control blocks (ECBs) when it issues its
WAIT. The NetView customization macros and services are provided to ensure that
any implied waiting is done through the ECB list of the task so that all of the
task-request interfaces within the NetView program remain enabled.

Every NetView task has its own termination ECB and its own message queue ECB.
Some types of tasks (for example, OSTs or DSTs) can have additional ECBs in their
ECB lists. The additional ECBs represent processing that the task tests for and
performs when it is posted out of its WAIT state.

Queuing Work to NetView Program Tasks
While a task is in its normal WAIT state, another task in the NetView program can
run. A NetView task that is running can be interrupted at any time by an event in
the system, and can be preempted by a higher-priority task until that task issues
its normal WAIT. System functions outside of the NetView program can also
interrupt the NetView processing by running scheduled interrupt exit routines that
are associated with specific NetView tasks.

Data for a task can be placed in its message queue or another work queue, and the
task can be posted to perform that work at any time. The data can originate in
another NetView task. This can happen when a DST queues message data to an
OST to be displayed to an operator. The data can come into the NetView program
through an interrupt exit routine that is scheduled by an event such as the
completion of a VTAM RECEIVE request.

Message and Command Buffers
The data placed in the various task queues is formatted into a special data
structure called a message buffer or a command buffer. A header at the beginning
of the buffer indicates the type of data the buffer contains and any special formats
by which the data must be accessed. Commands are processed by programs called
command processors that you provide in your customization programming for the
NetView program. Messages are processed either according to predefinitions built
into the NetView task, or by NetView automation command processors. Message
buffers are also available for automation at various points in NetView processing
through installation exits.

Immediate Commands
An immediate command starts processing as soon as an operator enters the
command. The requested function is performed immediately, even if the task is in
the middle of a large queue of work.

An immediate command runs under the OST and NNT subtask environments.
Unlike other commands, immediate commands can receive control with the
TVBINXIT bit set on. Immediate commands interrupt mainline processing and
cannot be interrupted by another command. Immediate commands can be
interrupted by other exits in asynchronous activity.

Long-Running Commands
A long-running command is a command that can suspend processing to allow
other activity, such as operator commands and data retrieval, and then resume
processing. All the NetView components are long-running commands. NetView

10 Customization Guide

command list language, REXX, PL/I, and C command procedures are also
long-running commands. The DSIPUSH macro allows an assembler command to
run as a long-running command.

Long-running commands run under an OST, NNT, PPT, or DST (logoff routines
only). Long-running commands can be:
v Invoked directly by operator input
v Called by a command list
v Called by another long-running command.

Long-running commands return control to the NetView program after scheduling
work but before processing is complete. The NetView program then processes
other work that is pending.

You can use long-running command processors to retrieve data from another task
or from another domain without allowing the calling function or calling command
list to proceed during the retrieval. When the retrieval is executing, the processor's
task can continue to receive messages and accept commands.

Data Services Commands
A data services command processor (DSCP) runs under the DST subtask
environment. DSCPs perform CNM data services and VSAM data services. DSCPs
can also be called for centralized or serialized user-defined functions that do not
use CNM interface or VSAM services.

Defining User-Written Programs on the Host: Exits and Commands
You can provide two types of user-written programs within the NetView task
environments:
v Installation exits
v Command processors.

Reference: The programming interface details are provided in IBM Tivoli NetView
for z/OS Programming: PL/I and C and IBM Tivoli NetView for z/OS Programming:
Assembler. In designing user-written functions, you can use the installation exit
interface and the command processor interface in the NetView program to fit your
own programming into the overall structure of the NetView program.

Installation Exit Programs
Installation exits are provided in the NetView program at several points in the
processing of logon and logoff data, command buffers, and message buffers.
Different exits are driven based on the origin of the buffer and the stage of the
NetView processing that the exit is in. Special exits are driven under DSTs to
handle the data for a task during initialization, input, and output.

Reference: For a summary of the NetView installation exits, see the IBM Tivoli
NetView for z/OS Automation Guide, IBM Tivoli NetView for z/OS Programming:
Assembler, and IBM Tivoli NetView for z/OS Programming: PL/I and C.

General installation exits are identified and invoked with preassigned module
names of DSIEXnn, and the DST exits are uniquely identified in the task DSTINIT
initialization statements.

Chapter 1. Designing Functions 11

DSIEX21 is used to access the DSITCPRF member. For more information, see the
IBM Tivoli NetView for z/OS Security Reference.

Command Processors and Command Lists
NetView command processors and command lists can be started by:
v An operator request
v A command buffer queued to a task for processing by any NetView program
v A command call from another command processor
v An action specified in the NetView automation table

Reference: To define command lists written in the NetView command list
language or REXX to the NetView program, place them in the NetView command
list library (ddname DSICLD). See the IBM Tivoli NetView for z/OS Programming:
REXX and the NetView Command List Language to find out how to create command
lists for specific operating systems.

You must link-edit PL/I, C, and assembler command processors into the NetView
load library (ddname STEPLIB), and define them to the NetView program. To define
command processors written in PL/I, C, or assembler to the NetView program, use
a CMDDEF statement in the CNMCMD member of DSIPARM. Command
processors are link-edited into the NetView load library.

You can implement parts of a function in multiple installation exit programs and
command processors. A common way of splitting a function across command
processors is to divide processing between OSTs and DSTs. Because OSTs receive
data from operator stations and return data back to them, a command processor is
written to:
v Be called when the command is entered by an operator
v Parse the command data and form a data services request
v Queue a command buffer containing the data services command to be processed

by the DST
v Return an error message or a command confirmation message to the operator

The DST completes the function in a separate command processor that is called
because of the command buffer that is built and queued by the first command
processor. Under the DST, functions requiring the special data services of VSAM,
external logging, or the VTAM CNM interface are performed and messages can be
returned to the operator task that queued the command. Figure 2 on page 13
shows a typical program design for a function that uses the CNM interface and
VSAM services.

12 Customization Guide

With long running commands, you can separate a complex function into a
sequence of separate transactions. Command processors can establish a named
stack entry where an anchor address is saved. A related command processor can
later retrieve this address and perform another phase of the same processing.

When naming your commands, observe the following guidelines:
v Start with a letter (alphabetic)
v Avoid special characters such as commas and colons
v Avoid NetView command names, both internal commands and those shipped in

CNMCMD. NetView internal command names are CSCFDST, HMSTATS,
LOGNMVT, LOGRU, MESSAGE, PIPE, and VIEW.

v Avoid the following NetView prefixes:
– AAU
– BNH
– BNI
– BNJ
– BNK
– BNT
– CNM
– DSI
– DUI
– DWO
– EGV
– EKG
– EUY
– EXQ
– EYV
– EZL
– FKB
– FKV
– FKW
– FKX
– FLB
– FLC
– FMG
– FNA
– IHS

Note: Messages that are issued by different means in a command processor or
command list might not be displayed at its destination in the same order in which

Figure 2. Program Design Example for DST Function

Chapter 1. Designing Functions 13

they are requested by the command processor or command list. For example,
assume that a command list gets control via the designator character (DSIG) and
runs on a CONSOLE=*ANY* autotask. If the command list then issues a PIPE
command with the CONSOLE stage followed by a WTO command, the message
issued by the WTO command might be displayed on the operator console before
the message issued by the PIPE command with CONSOLE.

Adding Optional Tasks to the NetView Program
You can write a completely new subtask in assembler language that the NetView
program starts as an optional task (OPT) or subtask.

For an OPT, you must supply code for the subtask's initialization, installation exit,
message, and command processing functions and termination. Because some of
these elements are already provided in an existing DST, using the DST as a starting
point is more practical.

Reference: For more information on OPTs and DSTs in assembler language, see
the IBM Tivoli NetView for z/OS Programming: Assembler.

Choosing a Language
One application program interface might be more suitable than another for your
particular customization requirements. Consider the effects on performance, ease of
creation, and maintenance when determining the interface to use. This section
describes the languages available and lists reasons that you might choose one
language over another.

Input and Output
REXX, PL/I, C, and assembler all offer functions for reading from and writing to
direct access storage devices (DASD). The NetView program provides specialized
disk services and VSAM data services to access network management data files. In
addition, functions written in PL/I or C can invoke system allocation and access
methods to read and write data. CNM interface services also provide access to data
coming from devices in the network.

Reference: See the IBM Tivoli NetView for z/OS Programming: PL/I and C for
information about VSAM and CNM interface services. See the IBM Tivoli NetView
for z/OS Programming: Assembler for information about using DSIDKS for read
access to NetView data sets or files, DSIZVSMS for VSAM I/O, and DSIZCSMS for
CNM data services.

See the IBM Tivoli NetView for z/OS Programming: REXX and the NetView Command
List Language for information on REXX file input and output.

Performance
Write performance-critical applications in a compiled or assembled language.
Generally, compiled or assembled command procedures execute faster than
interpretive (REXX and NetView command list language) command lists.

You must write NetView-driven installation exit routines in assembler, PL/I, or C.
Any command processor that accesses NetView control blocks must be written in
assembler. Command procedures that can be driven by terminal input or by
messages and that do not need to access NetView control blocks can usually be
written in REXX or in NetView command list language. Generally, command lists

14 Customization Guide

written in REXX perform somewhat better than those written in NetView
command list language. See “REXX Versus the NetView Command List Language.”
Additionally, the performance of REXX command lists can be improved by
compiling the REXX command list.

Preloading a REXX or NetView command list (see the NetView online help for the
LOADCL command) improves overall performance of the command list.

Reference: For details about compiling REXX command lists, see the IBM Tivoli
NetView for z/OS Tuning Guide.

For additional performance recommendations, see the IBM Tivoli NetView for z/OS
Installation: Configuring Additional Components and IBM Tivoli NetView for z/OS
Installation: Configuring Additional Components.

Stability
If you anticipate changes to your procedures as you gain more experience or as
your operating environment changes, you might want to use command lists to
implement the procedures initially. Changes are easier to make in command lists
because you can incorporate the changes and test them online without having to
restart the NetView program. You can translate procedures into a compiled
language when you become confident of their stability.

Testing
Testing capabilities for command lists include the ability to trace execution using
either operator commands or command list statements. A remote interactive
debugger (RID) that displays information to a NetView operator console can help
you in debugging PL/I and C user-written command processors and installation
exits. The NetView program does not provide any specific functions to help debug
assembler programs.

Speed of Implementation
Because command lists are easy to write, test, and put into production, they can be
an appropriate choice in addressing immediate operational needs.

REXX Versus the NetView Command List Language
If all of your systems can run REXX, choose REXX over the NetView command list
language for writing command lists. REXX is a structured language that enables
the use of subroutines. REXX is the easier language to learn and provides
additional functions, such as mathematical capabilities and improved string
handling. REXX can read from and write to data sets with EXECIO. In addition,
the performance of REXX command lists can be improved by compiling the REXX
command list.

REXX language skills can be used in environments other than the NetView
program. However, REXX procedures written for the NetView program probably
will not be transportable to other environments because of their function content.
In multiple environments, REXX is more useful because you can transfer REXX
programming skills to solve NetView problems without learning another language.

If your installation uses several operating systems, it is possible that some of them
support REXX and others do not. In this case, you can create bilingual command
lists that contain both REXX and NetView command list versions of your

Chapter 1. Designing Functions 15

instructions. The command lists run in REXX if REXX is available; otherwise, they
process in the NetView command list language.

Reference: For details about compiling REXX command lists, see the IBM Tivoli
NetView for z/OS Programming: REXX and the NetView Command List Language.

See the IBM Tivoli NetView for z/OS Programming: REXX and the NetView Command
List Language for more information about bilingual command lists.

Language Choices by Function
Table 2 lists additional capabilities to consider when choosing which language to
use.

Table 2. Language Choices by Function

Function

REXX or
NetView
CLIST PL/I or C Assembler

Send message to NetView operator in line
mode.

Yes Yes Yes

Interact with operator through NetView
operator's screen (PAUSE/GO command).

Yes Yes No

Invoke NetView commands. Yes Yes Difficult

Trap and process messages destined for an
operator.

Yes Yes Difficult

Access task and common global variables. Yes Yes Yes

Create and access named areas of storage. Yes REXX; No
CLIST

Yes Yes

Interact with operator through full-screen
panels.

With VIEW
command

With VIEW
command

Difficult

Communicate non-SPCI data over the
CNM interface.

No Yes Yes

Access DASD or VSAM files.
Note: The PIPE command provides the
ability to read from disk. DSIVSAM and
DSIVSMX provide access to VSAM files.

Yes Yes Yes

Program debugging support provided. Yes Yes No

Implement NetView installation exits. No Most Yes

Access NetView control blocks. No No Yes

Reference: See your specific programming language guides for considerations on
writing in mixed languages.

Logging
The NetView program provides several ways to log information. Table 3 lists the
available features of the common logging methods.

Table 3. Features of NetView Logging Methods

Feature Network Log
External SMF
Log

External
User-Defined
Log

NetView
Sequential Log

Access method VSAM VSAM Sequential BSAM

16 Customization Guide

Table 3. Features of NetView Logging Methods (continued)

Feature Network Log
External SMF
Log

External
User-Defined
Log

NetView
Sequential Log

Device-
independent

No No Yes Yes

Function
provided

Record all
operator station
activity

Service level
verification and
accounting

User-defined Base service for
user-defined
functions

API–PL/I and C
*

CNMSMSG CNMSMSG CNMSMSG CNMSMSG

API–assembler DSIWLS DSIWLS DSIWLS DSIWLS

Begin recording START See IBM Tivoli
NetView for z/OS
Installation:
Configuring
Additional
Components.

See IBM Tivoli
NetView for z/OS
Installation:
Configuring
Additional
Components.

See IBM Tivoli
NetView for z/OS
Installation:
Configuring
Additional
Components.

Browse NetView
BROWSE

No Operating
system browse

Operating
system browse

Multiple log
tasks

No No No Yes

Variable length
blocks and
records

No Yes Yes Yes

Primary /
secondary data
sets or files

Yes System
controlled

No Yes

SWITCH,
RESUME,
AUTOFLIP

Yes N/A No Yes

Installation exits Many XITXL XITXL XITBN, XITBO

Reference: For information about the network log, see the IBM Tivoli NetView for
z/OS Automation Guide. For information about external logging using the system
management facility (SMF), a user-defined log, or sequential logging, see the IBM
Tivoli NetView for z/OS Installation: Configuring Additional Components.

Cross-Reference for Message and Environment Functions
Table 4 on page 18, Table 5 on page 19, and Table 6 on page 20 provide a
cross-reference for the NetView system data, task data, and message functions.
With these matrixes, you can determine whether the function you are interested in
is available to the automation table, REXX, NetView command list language, or
assembler. You can also determine what the name of the function is. Each matrix is
alphabetized by the name of the REXX function.

Note:

1. If you are writing assembler-language command processors, see the IBM Tivoli
NetView for z/OS Programming: Assembler for the BUFHDR mapping within the
DSITIB mapping macro, the DSIIFR mapping macro, and the DSIAIFRO
mapping macro for exact field definitions.

Chapter 1. Designing Functions 17

2. If you are writing command lists, see the IBM Tivoli NetView for z/OS
Programming: REXX and the NetView Command List Language for more
information about NetView command list language control variables and REXX
functions.

3. If you are writing in PL/I or C language, see the IBM Tivoli NetView for z/OS
Programming: PL/I and C for more information about the CNMINFC, CNMINFI,
and CNMGETA service routines.

4. If you are writing automation table statements, see the IBM Tivoli NetView for
z/OS Automation Guide for a description of the automation table condition items.

Table 4. Automation Variable Cross-Reference Table for System Data. The data returned is about the system. The
same data is returned in every message for every task.

REXX
Function Description

Automation
Table
Condition
Item

HLL
Service
Routine and
Options

Control
Block
Field

ASID() NetView address space
identifier

Not available CNMINFI ASID ASCBASID

CURSYS() Current® z/OS system
name

CURSYS CNMINFC CURSYS CVTSNAME
(MVS)

Date(USA) Current date Not available CNMINFC DATE

DOMAIN() Current domain name DOMAIN CNMINFC DOMAIN MVTCURAN

ECVTPSEQ() Product sequence number ECVTPSEQ CNMINFC ECVTPSEQ IHAECVT (MVS)

MVSLEVEL() Current z/OS system level MVSLEVEL CNMINFC MVSLEVEL CVTPRODN
(MVS)

NETID() VTAM network identifier NETID CNMINFC NETID ACB vectors

NETVIEW() NetView version and
release identifier

NETVIEW CNMINFC NVVER MVTVER

OPSYSTEM() Operating system for
which the NetView
program was compiled

OPSYSTEM CNMINFC OPSYSTEM DSISYS Compiler
variable

STCKGMT()
8-byte value

Greenwich Mean Time
Store Clock Value

Not available
CNMINFC CLOCK
8-byte value

SUPPCHAR() In the NetView program,
the character that
suppresses the command
echo or the command's
message output

Not available CNMINFC SUPPCHAR MVTSPCHR

SYSPLEX() 1–8 character name of the
z/OS SYSPLEX where the
command list is running

SYSPLEX CNMINFC SYSPLEX ECVTSPLX

TIME(option) Current time Not available CNMINFC TIME

VTAM() VTAM level if active VTAM CNMINFC VTAM
ACB vectors
MVTACB
ACBOPEN

VTCOMPID() VTAM component
identifier

VTCOMPID CNMINFC VTCOMPID
ACB vectors
MVTACB
ACBOPEN

18 Customization Guide

Table 4. Automation Variable Cross-Reference Table for System Data (continued). The data returned is about the
system. The same data is returned in every message for every task.

REXX
Function Description

Automation
Table
Condition
Item

HLL
Service
Routine and
Options

Control
Block
Field

WEEKDAYN() Decimal number
representing day of week

WEEKDAYN CNMINFI WEEKDAYN

Table 5. Automation Variable Cross-Reference Table for System Data. The data returned is about the system. The
same data is returned in every message for every task.

REXX
Function Description

Automation
Table
Condition
Item

HLL
Service
Routine and
Options

Control
Block
Field

NetView program
termination indicator

NVCLOSE CNMINFI CLOSING MVTCLOSE

APPLID() Application name of the
current task

Not available CNMINFC APPLID TVBAPID

ARG() Input parameters for the
active command list

Not available Not available

ATTENDED() Task information ATTENDED CNMINFI ATTENDED TVBSYSCN
TVBAUTOO
TVBDAUT

AUTCONID() MVS console name that is
associated with an
autotask. This MVS console
can issue NetView
commands to run under
this autotask.

Not available CNMINFC AUTCONID TVBSYSCN
TVBCNAME

AUTOTASK() Autotask indicator AUTOTASK CNMINFI AUTOTASK TVBAUTOO

COMPNAME() Component name that was
active when command list
invoked

Not available Not available

CURCONID() MVS console name used by
a NetView task to issue
MVS commands and
receive MVS messages

Not available CNMINFC CURCONID TVBMCSNU

TVBMCSNA

DISTAUTO() Distributed autotask
indicator

DISTAUTO CNMINFI DISTAUTO TVBDAUT

HCOPY() Hardcopy task for this task Not available CNMINFC HCOPY TVBHCTVB ->
TVBOPID

LU() Terminal name of the
currently running task

Not available CNMINFC LU TVBLUNAM

NVCNT() Number of domains
available

Not available Not available

NVID(n) Domain ID array Not available Not available

NVSTAT(name) Domain status Not available Not available

Chapter 1. Designing Functions 19

Table 5. Automation Variable Cross-Reference Table for System Data (continued). The data returned is about the
system. The same data is returned in every message for every task.

REXX
Function Description

Automation
Table
Condition
Item

HLL
Service
Routine and
Options

Control
Block
Field

OPID() ID of currently running
task

OPID CNMINFC OPID, or
CNMINFC TASKNAME

TVBOPID

PARMCNT() Number of input
parameters to the active
command list

Not available Not available

TASK() Type of task TASK CNMINFC TASK CBHTYPE in
DSITVB

WTO.REPLY WTOR reply text Not available Not available

Table 6. Automation Variable Cross-Reference Table for Message Data. Data is different for each message or MSU.
The message ID is message data.

REXX
Functions
and
variables Description

Automation
Table
Condition
Item

HLL
Service
Routine and
Options

Control
Block
Field

1–1100 byte source object Not available CNMGETA MSGSRCOB MSODATA

MSOLEN

ACTIONDL() Message deletion reason ACTIONDL CNMCAGA ACTIONDL
IFRAUDLO
IFRAUDTO
IFRAUNVD
IFRAUDFL
IFRAUDF2

ACTIONMG() Action message ACTIONMG CNMCAGA ACTIONMG IFRAUACN

AREAID() MVS area ID AREAID CNMGETA AREAID IFRAUWMA

CPOCAREA

MDBCAREA

AUTOTOKE() MPF automation token

1–8 characters, or null

AUTOTOKE CNMGETA AUTOTOKE IFRAUTOK

CPOCAUTO

MDBCAUTO

CART() 8-byte command and
response token

CART CNMGETA CART CPOCCART

MDBCCART

DESC() 2 bytes of MVS descriptor
codes

DESC CNMGETA DESC IFRAUWDS

CPOCDESC

MDBCDESC

GETMLINE
command

Message text TEXT CNMGETD GETFIRST or
CNMGETD GETNEXT

20 Customization Guide

Table 6. Automation Variable Cross-Reference Table for Message Data (continued). Data is different for each
message or MSU. The message ID is message data.

REXX
Functions
and
variables Description

Automation
Table
Condition
Item

HLL
Service
Routine and
Options

Control
Block
Field

GETMPRES
command

4 bytes of presentation
attributes

This information is
contained in the text
buffers chained from
IFRAUTBA.

LINEPRES

LINEPRES only
returns
presentation
characteristics for
the first line of
the message

Not available HDRTMTPA

MDBTMTPA

GETMSIZE
command

2-byte count of number of
lines of message

The value in CPOCLCNT
might not reflect the actual
number of buffers in the
message. Therefore,
assembler command
processors should count
the number of buffers on
the IFRAUTBA chain.

Not available Not available CPOCLCNT

MDBCLCNT

GETMTFLG
command

2 bytes of text object flags

This information is
contained in the text
buffers chained from
IFRAUTBA.

LINETFLG

LINETFLG only
returns object
type flags for the
first line of the
message

Not available HDRTLNTY

MDBTLNTY

HDRMTYPE() NetView message type HDRMTYPE ORIG_MSG_TYPE

ORIG_MSG_TYPE contains
the message type only after
CNMGETD has been
issued.

HDRMTYPE

IFRAUGMT() 8-byte hexadecimal Store
Clock value when AIFR
was created

None CNMGETA IFRAUGMT

IFRAUIND() 2 bytes of automation IFR
indicator flags

IFRAUIND(nn) CNMGETA IFRAUIND IFRAUIND

IFRAUIN3() 1 byte of indicator bits IFRAUIN3(nn) CNMGETA IFRAUIN3 IFRAUIN3

IFRAUI3X() 32-bit field of which
IFRAUIN3 are the first 8
bits

IFRAUI3X CNMCAGA IFRAUI3X IFRAUI3X

IFRAUNVF MVS Retain Flags MVSRTAIN CNMGETA MVSRTAIN IFRAUNVF

IFRAUSDR() Original sender of a
message or MSU, whereas
HDRSENDR is unreliable

IFRAUSDR CNMGETA IFRAUSDR IFRAUSDR

IFRAUSRB()
IFRAUSB2()

2-byte user field from the
AIFR. This user field can
be referenced either as bits
or characters.

IFRAUSRB(nn),
IFRAUSB2(n)

CNMGETA IFRAUSRB,
CNMGETA IFRAUSB2

IFRAUSRB

Chapter 1. Designing Functions 21

Table 6. Automation Variable Cross-Reference Table for Message Data (continued). Data is different for each
message or MSU. The message ID is message data.

REXX
Functions
and
variables Description

Automation
Table
Condition
Item

HLL
Service
Routine and
Options

Control
Block
Field

IFRAUSRC()
IFRAUSC2()

16-byte user field from the
AIFR. This user field can
be referenced either as bits
or characters.

IFRAUSRC,
IFRAUSC2

CNMGETA IFRAUSRC,
CNMGETA IFRAUSC2

IFRAUSRC

IFRAUTA1() 6 bytes of control flags IFRAUTA1(nn) CNMGETA IFRAUTA1 IFRAUTA1

IFRAUWF1() 4 bytes of MVS specific
WQE flags

IFRAUWF1(nn) CNMGETA IFRAUWF1 IFRAUWF1

JOBNAME() 8-byte MVS job name JOBNAME CNMGETA JOBNAME
IFRAUWJA
GOJGJBNM
MDBGJBNM

JOBNUM() 8-byte MVS job number JOBNUM CNMGETA JOBNUM
IFRAUWJU
CPOCOJID
MDBCOJID

KEY() 8-byte key associated with
a message

KEY CNMGETA KEY
CPOCKEY
MDBCKEY

LINETYPE()

GETMTYPE
command

Message MLWTO
indicators

Not available ORIG_LINE_TYPE

ORIG_LINE_TYPE contains
the line type only after
CNMGETD has been
issued.

HDRLNTYP
IFRAUWF1(3)
HDRTTYPE
MDBTTYPE

MCSFLAG() 2 bytes of MVS MCS flags

In command lists, PL/I,
and C, MCSFLAG returns
a selection of eight
MCSFLAG bits. In the
automation table,
MCSFLAG returns 16 bits
that match the assembler
control block field.

MCSFLAG CNMGETA MCSFLAG IFRAUMCS

MSGASID() z/OS system address space
identifier

Not available CNMGETA MSGASID
IFRAUASI
IFRAUWAS
CPOCASID
MDBCASID

MSGAUTH() Indicates whether an MVS
system message was issued
by an authorized program

MSGAUTH CNMGETA MSGAUTH
CPOCAUTH
MDBCAUTH

MSGCATTR() 2 bytes of MVS message
attributes flags

MSGCATTR CNMGETA MSGCATTR
CPOCATTR
MDBCATTR

22 Customization Guide

Table 6. Automation Variable Cross-Reference Table for Message Data (continued). Data is different for each
message or MSU. The message ID is message data.

REXX
Functions
and
variables Description

Automation
Table
Condition
Item

HLL
Service
Routine and
Options

Control
Block
Field

MSGCMISC() 1 byte of MVS
miscellaneous routing
information flags

MSGCMISC CNMGETA MSGCMISC CPOCMISC

MDBCMISC

MSGCMLVL() 2 bytes of MVS
message-level flags

MSGCMLVL CNMGETA MSGCMLVL CPOCMLVL
MDBCAUTH

MSGCMSGT() 2 bytes of message type
flags

MSGCMSGT CNMGETA MSGCMSGT CPOCMSGT
MDBCMSGT

MSGCNT() Number of tokens in a
message

Not available Not available

MSGCOJBN() 8-character originating job
name

MSGCOJBN CNMGETA MSGCOJBN CPOCOJBN

MDBCOJBN

MSGCPROD() MVS system product level
of the system that issued
the message

MSGCPROD CNMGETA MSGCPROD CPOCPROD
MDBCPROD

MSGCSPLX() 1–8 character name of MVS
SYSPLEX where the
received message
originated

MSGCSPLX CNMGETA MSGCSPLX CPOCSPLX

MSGCSYID() Decimal system ID (for
DOM)

Not available CNMGETA MSGCSYID CPOCSYID
MDBCSYID

MSGDOMFL() 1 byte of DOM flags MSGDOMFL CNMGETA MSGDOMFL CPODOMFL
MDBDOMFL

MSGGBGPA() 4 bytes of background
presentation attributes

MSGGBGPA CNMGETA MSGGBGPA GOJGBGPA

MDBGBGPA

MSGGDATE() 7-character date in the
form yyyyddd

MSGGDATE CNMGETA MSGGDATE GOJGDSTP
MDBGDSTP

MSGGFGPA() 4 bytes of foreground
presentation attributes

MSGGFGPA CNMGETA MSGGFGPA GOJGFGPA
MDBGFGPA

MSGGMFLG() 2 bytes of MVS general
message flags

MSGGMFLG CNMGETA MSGGMFLG GOJGMFLG
MDBGMFLG

MSGGMID() 4-byte MVS message ID
field

MSGGMID CNMGETA MSGGMID GOJGMID
MDBGMID

MSGGSEQ() MVS message sequence
number. This sequence
number, together with
MSGGSYID, determine
MSGGMID.

Not available CNMGETA MSGGSEQ GOJGSEQ

MSGGSYID() System ID of the MVS
system from which the
message was issued

Not available CNMGETA MSGGSYID GOJGSYID
MDBGSYID

Chapter 1. Designing Functions 23

Table 6. Automation Variable Cross-Reference Table for Message Data (continued). Data is different for each
message or MSU. The message ID is message data.

REXX
Functions
and
variables Description

Automation
Table
Condition
Item

HLL
Service
Routine and
Options

Control
Block
Field

MSGGTIME() 11-byte time hh.mm.ss.th
character string

MSGGTIME CNMGETA MSGGTIME GOJGTIMH
MDBGTIMH
GOJGTIMT
MDBGTIMT

MSGID() Message ID, which is not
always the first item of a
message. For example, if
the message is a WTOR, a
REPLYID precedes the
message ID.

MSGID ORIG_PROCESS

ORIG_PROCESS contains
the message ID only after
CNMGETD is issued.

MSGORIGN() Message domain name (or
sometimes TAF session
name). This always returns
the domain name in AIFR
buffers.

DOMAINID ORIG_DOMAIN

ORIG_DOMAIN contains
the domain name only
after CNMGETD has been
issued.

HDRDOMID

MSGSRCNM() 1–17 character source name
from the source object

MSGSRCNM CNMGETA MSGSRCNM MSOSUBDA
MSOSBNIK
MSOSBNID
MSOSBNAU

MSGSTR() Text of message after the
message ID

Not available CNMGETD GETFIRST or
CNMGETD GETNEXT

MSGTOKEN() Numeric token associated
with message

Not available CNMGETA MSGTOKEN CPOCTOKN
MDBCTOKN

MSGTSTMP() Message time stamp Not available CNMGETA MSGTSTMP HDRTSTMP

NVDELID() NetView DOM ID NVDELID CNMCAGA NVDELID IFRAUGMT
HDRDOMID

MSGVAR(n) Tokens of the message

In command lists, the
token after the message ID
is returned as the first
token. In the automation
table, the message ID is
returned as the first token.

TOKEN CNMGETD GETFIRST or
CNMGETD GETNEXT

PARTID() First two characters of a
VSE message prefix, which,
for some VSE messages,
indicates the VSE partition
ID

PARTID CNMGETA PARTID

PRTY() 2-byte MVS message
priority

Not available CNMGETA PRTY CPOCPRTY
MDBCPRTY

REPLYID() Reply ID Not available CNMGETA REPLYID CPOCRPYI
MDBCRPYI
CPOCRPYB
MDBCRPYB

24 Customization Guide

Table 6. Automation Variable Cross-Reference Table for Message Data (continued). Data is different for each
message or MSU. The message ID is message data.

REXX
Functions
and
variables Description

Automation
Table
Condition
Item

HLL
Service
Routine and
Options

Control
Block
Field

ROUTCDE() 16 bytes of MVS routing
codes (128 bits)

ROUTCDE CNMGETA ROUTCDE IFRAUWRT
CPOCERC
MDBCERC

SESSID() TAF session name SESSID CNMGETA SESSID IFRAUTAF

SMSGID() MVS message ID for DOM
correlation

Not available CNMGETA SMSGID IFRAUWID

SYSCONID() The MVS console name
that is associated with the
message

SYSCONID CNMGETA SYSCONID IFRAUWUC
IFRAUCON
CPOCCNID
MDBCCNID

SYSID() 8-byte z/OS system name
that is associated with the
message

SYSID CNMGETA SYSID IFRAUWSN
GOJGOSNM
MDBGOSNM

Customizing PF Keys and Immediate Message Line
You can set global variables that can be searched for and placed on the PF key line
on panels displayed by BROWSE, STATMON, and VIEW commands. On VIEW
panels, the immediate message line is also used as the PF key line. The variable
names are prefixed by (&)CNMIM and followed by the application name. Valid
variables include CNMIMLBROWSE, CNMIMMBROWSE, CNMIMSTATMON,
CNMIMVIEW, and CNMIMWINDOW.

For View panels, if the VIEW application has not provided a value for CNMIMDL,
VIEW searches the global dictionaries (task, then common) for a variable named
CNMIMxxx, where xxx is the application name provided when VIEW was
invoked. If the CNMIMxxx variable is not found, VIEW searches for CNMIMVIEW
in the same dictionaries. This is similar to the way keys are set for VIEW
applications. Finally, if none of these variables is present, the text from message
BNH257I is used.

Chapter 1. Designing Functions 25

Modifying CNMKEYS

The PFKDEF command list (CNME1010) can assign one or more task global
variables from the target file to match the key settings for applicable NetView
applications. Figure 3 shows how you can set the PF keys for the Browse, Status
Monitor, and View panels.

-------------------- DEFINE TEXT FOR KEY LINES -------------------
*
* The separator line above is required in any key definition file
* which defines "key line" texts. This separator line MUST begin
* with 9 dashes. All key definitions must precede this line, and
* all "key line" definitions must follow it.
*
* Optionally uncomment and modify the following statements, which
* assign values to the "key line" area of Statmon, Browse and View
* panels. The same rules are followed in this section as above with
* respect to commas and continuation lines. Keep the variable name
* between the delimiters, and PFKDEF will assign the rest of the line
* (including continuations) to that variable. Do not use leading
* blanks.
*
*/CNMIMSTATMON/1=HLP 2=END 3=RET 4=KYS 5=LOG 6=,
*ROL 7=BCK 8=FWD 9=SR 10=SV 11=SC 12=RTV
*/CNMIMLBROWSE/1=HLP 2=END 3=RET 4=KYS 5=RPF 6=,
*ROL 7=BCK 8=FWD 9=TOP 10=LFT 11=RGT 12=RTV
*/CNMIMMBROWSE/1=HLP 2=END 3=RET 4=KYS 5=RPF 6=,
*ROL 7=BCK 8=FWD 9=TOP 10=WIN 11=WHO 12=RTV
*/CNMIMVIEW/1=HLP 2=END 3=RET 4=KYS 5=LOG 6=,
*ROL 7=BCK 8=FWD 9=TOP 10=WIN 11=ENT 12=RTV
*/CNMIMWINDOW/1=HLP 2=RFR 3=RET 4=KYS 5=FIN 6=,
*ROL 7=BCK 8=FWD 9=TOP 10=LFT 11=RGT 12=RTV

Figure 3. Excerpt from CNMKEYS Sample to Set PF Keys

26 Customization Guide

Chapter 2. Customizing the NetView Command Facility Panel

The NetView command facility panel can be customized. You can customize:
v The colors of fields on the panel
v The information that precedes the message text
v The default colors for held, action, normal, and immediate classes of messages
v The color of the command area
v How much of the panel area is set aside for held and action messages

Using a Screen Format Definition
You can use a screen format (SCRNFMT) definition to specify attributes for the
command facility panel and a default value for the color of messages. To activate
the screen format definition, use the NetView DEFAULTS and OVERRIDE
commands. Refer to NetView online help for details on how to use DEFAULTS and
OVERRIDE. A short description of each option that can be specified in a screen
format definition is listed under “Screen Format Definition Statements.”

Reference: For detailed descriptions of the screen format definition statements,
refer to IBM Tivoli NetView for z/OS Administration Reference. CNMSCNFT is a
sample screen format definition, provided in IBM Tivoli NetView for z/OS
Installation: Configuring Additional Components.

Note:

1. Color and highlighting must be supported by your hardware and emulator. In
addition, you must log on to the NetView system with a query-type logmode.

2. When you replace an active screen format definition with a new screen format
definition, all definition statements are replaced. Any definition statement that
is not specified in the new screen format definition uses the value that is
supplied with the NetView program. The values that are supplied with the
NetView program for each definition statement are listed in IBM Tivoli NetView
for z/OS Administration Reference.
For example, a screen format definition has been activated with the DEFAULTS
command. Subsequently, operators activate customized screen format
definitions using the OVERRIDE command. The statements that were not
specified in an operator's screen format definition use the value that is supplied
with the NetView program rather than the value from the screen format
definition that was activated with the DEFAULTS command.

Screen Format Definition Statements
The following screen shows the fields that you can customize on the NetView
message panel.

© Copyright IBM Corp. 1997, 2015 27

The following formats can be customized:

▌1▐ Title area
Use the TITLE statement in a SCRNFMT definition to customize the color
of the word NETVIEW on the screen.

▌2▐ Domain identifier
Use the TITLEDOMID statement in a SCRNFMT definition to customize
the color of the NetView domain name.

▌3▐ Operator identifier
Use the TITLEOPID statement in a SCRNFMT definition to customize the
color of the operator name.

▌4▐ Current date
Use the TITLEDATE statement in a SCRNFMT definition to customize the
color of the date. You can also customize the format of the date using the
DEFAULTS and OVERRIDE commands.

▌5▐ Time data was last displayed
Use the TITLETIME statement in a SCRNFMT definition to customize the
color of the time. You can also customize the format of the time using the
DEFAULTS and OVERRIDE commands.

▌6▐ and ▌7▐ System states
Use the TITLESTAT statement in a SCRNFMT definition to customize the
color of the status characters in the upper right corner of the panel.

▌8▐ COLUMNHEAD line
Use the COLUMNHEAD statement in a SCRNFMT definition to create a
line at the top of the screen with labels for prefixes. This line can have up
to 16 tags (C1...C16) in any order. Total length of tags, including one space
between each tag, cannot exceed 78 characters. Set the tags using the
SCRNFMT definition. The PREFIX and NOPREFIX statements control
which tags appear. You can also choose not to have the line appear on the
screen.

▌9▐ Output area
Use the HELD, ACTION, NORMAL, and NORMQMAX statements of the
SCRNFMT definition.

▌1▐ ▌2 3 4 5 6 7▐
+___+
|NCCF N E T V I E W NCF01 OPER1 04/29/13 12:35:30 A W|
▌8▐
|C1 ... C16 |
▌9▐ |
▌10▐
|- NCF01 DSI020I OPERATOR OPER1 LOGGED ON FROM TERMINAL H11L42E USING |
▌11▐ |
| PROFILE (PROFSEC), HCL () |
- NCF01 DSI082I AUTOWRAP STOPPED

▌12 13▐
| ??? *** immediate messages appear here |
▌14▐
|list status=tasks |
+___+

Figure 4. NetView Message Panel.

NetView Message Panel

28 Customization Guide

Note: HELD, ACTION and NORMAL statements set default colors for
messages. If message color has been previously set, the default message
color will not take effect. See “Message Color and Highlighting” on page
30 for more information.

The NORMQMAX statement specifies how many normal messages are
queued for later display (excluding held and action messages). An example
of this is the number of messages kept while you are working in another
panel, or while the panel is locked.

When the NORMQMAX is exceeded, the NetView program automates and
logs (if required) incoming messages and then discards them, without
interrupting the operator. The oldest messages are discarded until the
number of queued messages is half the NORMQMAX value.

When the operator returns to the command facility (or the panel is
unlocked), message DSI593A indicates how many messages were
discarded.

The value of NORMQMAX can range from 0 to 2147483647; the default is
3000. The minimum value allowed is 100 messages, so if you specify less
than 100, it is rounded to 100. Specifying a NORMQMAX value of 0 means
an infinite queue, and is basically the same as specifying the maximum
value of 2147483647.

Attention: Setting the value of NORMQMAX too high might cause out of
storage conditions. Conversely, setting the value too low can prevent your
operators from seeing all of their messages even when message traffic rates
are low.

The NORMQMAX value also applies to hardcopy printers and to
OST-NNT cross-domain sessions. Hardcopy printers can get backlogged
because they are slow or because they run out of paper. An OST-NNT
session can get backlogged because the message traffic over the session
exceeds the send rate for that session.

▌10▐ Area for held and action messages
Use the HOLDPCNT statement in the SCRNFMT definition. The NetView
program uses 10 lines of the screen for the title line, immediate message
area, command area, and a warning held-message: DSI151I. Held messages
are not displayed in these 10 lines. You can use HOLDPCNT to specify
what percentage of the remaining lines you want to use for held messages.
For example, on a 24-line screen, setting HOLDPCNT to 100% will give
you 14 lines for held messages.

Specifying HOLDPCNT as 0 means that held messages are not displayed
on the screen. If HOLDPCNT is non-zero, the minimum number of lines
used for held messages is two.

You can use HOLDWARN to get a warning message that held messages
exist, even though they are not displayed on the screen.

Note: The NetView program will not display the control line of a held
message without the data line of the message. This helps prevent operators
from accidentally erasing a held message without seeing the text.

▌11▐ Indentation
Use the INDENT and MLINDENT statements in the SCRNFMT definition.

Chapter 2. Customizing the NetView Command Facility Panel 29

Separator line
The LASTLINE statement of the SCRNFMT definitions changes the color of
the dashed separator line between the new and old messages of the screen.

▌12▐ Command entry indicator
Use the CMDLINE statement of the SCRNFMT definition.

Lock/unlock indicator (***)
Use the LOCKIND statement in the SCRNFMT definition.

▌13▐ Immediate message area
Use the IMDAREA statement in the SCRNFMT definition.

▌14▐ Command area
Use the CMDLINE statement in the SCRNFMT definition to change the
color used for the command input area. You can change the size of the
command area with the INPUT command.

Message Color and Highlighting
Four color and highlighting attributes can be set for messages:
v Foreground color
v Background color
v Intensity
v Highlighting

Note: Background color is not supported on most 3270 devices and emulators. In
this case, black is used for the background color.

The color and highlighting attributes for messages can be set in several places:
v In the automation table
v For MVS system messages, in the MVS MPF table
v In installation exits
v In a screen format definition

Of all of the options listed, the screen format definition takes the lowest
precedence. The following rules of precedence apply:
v MPF table color intensity and highlighting for MVS system messages override

the screen format definition for these attributes.
v Automation table specifications of color intensity and highlighting override the

following:
– The MPF table specified color intensity and highlighting
– Screen format definition of color intensity and highlighting
– DSIEX02A and DSIEX17 specification of color intensity and highlighting

(these exits are driven prior to automation).
v Installation exit specifications of color intensity and highlighting override the

MPF and the screen format definition for these attributes. In addition,
installation exit DSIEX16 (post-automation) can override the color intensity and
highlighting specified in the automation table.

Each of these presentation attributes can be manipulated independently. For
example, an MVS system message that had a match in the automation table with a
color action would be presented in the intensity and highlighting as specified in
the MPF table, but with the color as specified in the automation table.

30 Customization Guide

Chapter 3. Using the VIEW Command

This chapter documents general-use programming interface and associated
guidance information.

The VIEW command processor can be used to display full-screen panels from
user-written programs. With the VIEW command, users can design their own
panels and control the color and highlighting of panel text.

The VIEW command enables command lists or command processors written in
PL/I or C to interact with an operator with full-screen panels. The data from the
command list or PL/I or C variables can be substituted into the panels.

Whether a field attribute is supplied by the value of an attribute variable or an
attribute character in a panel definition, it may apply to more than one line in a
display when the defined line is the last line of the panel definition, but not the
last actual row on the 3270 device (emulator).

When the value of a variable in a panel definition is longer than the remaining
space in a display line, the value will be truncated and not continue to the next
line of a display.

Note: The space available in a display line is governed by 3270 device (emulator)
characteristics and the text indicator in a panel definition.

Creating Full-Screen Panels
To create panels for your operators, define the text and format in a data set or file.
The panel source consists of a prologue, followed by text and variables that define
the panel to be displayed. Figure 5 on page 32 is an example of the information in
the help source file. See “General Help Fields” on page 32 for descriptions of each
numbered field in the figure.

If your display consists of a sequence of lines or messages, you might find it easier
to use the WINDOW command for your full-screen panel. Use WINDOW to alter
its display and to define or redirect subcommands. For more information, refer to
the online help for WINDOW.

The NetView program provides a number of command lists that use the VIEW
command to display full-screen panels. Displaying a new panel by invoking VIEW
from a command list requires that you either modify an existing command list or
write a new one. When you modify a command list that is supplied by IBM, first
copy it into a user data set and change its name.

© Copyright IBM Corp. 1997, 2015 31

General Help Fields
The special characters in the source file, such as the dollar sign ($) and the percent
sign (%), are described in “Controlling Color and Highlighting of Fields” on page
38.

▌1▐ Prologue
An optional section for programmer comments. Each line of the prologue
begins with /* in columns 1 and 2. Only comments can be placed in this
section. If comments are displayed in the Help or Option Definitions
section, a return code of 83 is sent, and the panel is not displayed.
Comments that are displayed after these sections are treated as data.

▌2▐ Help
Optional definition of the panel. This field follows the prologue and is
coded in the following format:
Column
1 15
HELP=helppan comment

/***
/* (C) COPYRIGHT IBM CORP. 2011 ▌1▐
/* DESCRIPTION: MENU FOR NCCF INFORMATION
/* CHANGE ACTIVITY:
/***
HELP=CNM5H000 help panel title ▌2▐
1 CNM1OVER Cmd Facility Overview
2 CNMKTAAF TAF Help
3 CNMKNCSC Using NCCF Screens ▌3▐
4 CMD=’HELP NCCF COMMANDS’
5 CNMZZZZZ Field Level Help
*** ▌4▐
+CNMKNCCF ▌5▐ %COMMAND FACILITY HELP MENU ▌6▐
$
$
\Select+ To get information about
$
$ %1 $Operator’s overview of the command facility
$ %2 $Using the terminal access facility (TAF)
$ ▌7▐
$ %3 $The command facility screen
$ %4 $Command facility commands and command lists
$
$ %5 $Field level help
$
$
$
+Type a number (1 through 5) and press ENTER.
$
$
% HELP NETVIEW --->$NetView Help Menu
$
$
$
&CNMIMDL ▌8▐
%Action===>~&CUR ▌9▐

Figure 5. Example of Source for General Help Information.

Example of Source for General Help Information

32 Customization Guide

Note: You can also use HELP CMD=’command_text’. See the following
description for ▌3▐.

▌3▐ Option Definitions
An optional list of selections the operator can choose. This list can contain
panel names or commands. You can add an optional comment after the
panel name or command. At least one blank must separate the panel name
or command from the comment. The list cannot exceed 49 entries. The list
is coded in the following format:
Column
1 3
n panel_name or CMD='command_text' comment

Where n is the character the operator enters to call the panel or issue the
command.

To produce a continuation panel, n is blank, as follows:
Column
1 3

panel_name comment

In this case, panel_name identifies the continuation panel.

▌4▐ Text Indicator
Three required asterisks separate the prologue, help, and panel definitions
from the displayed panel text. These asterisks can be followed by the
following options, which can be in any order and must be separated by at
least one blank.
v The AT1 option is attribute set 1 for color and highlighting attributes.

See Table 7 on page 34 and Table 11 on page 39 for more information.
v The AT2 option is attribute set 2 for color and highlighting attributes.

See Table 7 on page 34 and Table 11 on page 39 for more information.
v The SFD (screen-format default) option means that when the color or

highlighting for a field on a VIEW panel is either specified or else
defaults to X'00' (the default for 3270), then the color or highlighting
specified for the NCCF screen by the DEFAULTS SCRNFMT command
or OVERRIDE SCRNFMT command is used. IF SFD is not specified, or
if no active SCRNFMT member is in effect, X'00' is sent to the device. If
the VIEW panel field is interpreted as the input command line, the color
and highlighting specified by the SCRNFMT CMDLINE is used; for any
other field, the SCRNFMT NORMAL specification is used. Sample
CNMSCNFT contains additional information.

v The XVAR option provides variables that can contain up to 31
characters, including periods.
Without this option, variables can contain only 11 characters and cannot
contain periods. See Table 7 on page 34 and “Compound Symbols” on
page 45 for more information on the XVAR option.

v The OPTROW=optchar option can be used to specify that any row (line)
that begins with the character defined by optchar is an optional row. The
maximum number of optional rows is defined as the number of rows
supported by the terminal, minus 24 (which can be zero). Optional rows
defined on the panel that go beyond this maximum are not displayed.
Also, rows (regular or optional) that go beyond the terminal's limit are
not displayed.
For an optional row, all the characters are shifted left one position to
compensate for the optchar, and the resulting last position (column 80) is
treated as a blank.

Chapter 3. Using the VIEW Command 33

See the WINDOW command list (CNME1505) and its View panel,
CNMKWIND, as an example of how to use OPTROW.

v The WIDE option enables the entire line width to be used on terminals
that support more than 80 columns. When WIDE is specified, panel
variables that are the last non-blank specifications on their respective
lines are substituted. The variables are not truncated until the end of the
line, which is defined by the terminal.
See the WINDOW command list (CNME1505) and its View panel,
CNMKWIND, as an example of how to use WIDE.

Table 7. Examples of Using Text Indicator Options

Coding Results

*** AT1 v Attribute set 1

v English

v 11-character variable names, no periods

When three asterisks are followed by the AT2 option, attribute set 2 is used for
color and highlighting. For example:
v *** AT2 for English
v For attribute set 1, use *** or *** AT1

For attribute set 1 and variables as long as 31 characters, use *** AT1 XVAR for
English.

See “Controlling Color and Highlighting of Fields” on page 38 for more
information on attribute sets 1 and 2.

▌5▐ Name
The name of the panel.

▌6▐ Heading
The text that describes the use of the panel.

▌7▐ Panel Text
Up to 24 lines of text that constitute the displayed panel. See also the
OPTROW option described under Text Indicator.

Command list variables can be displayed anywhere in the panel text.See
“Displaying Variables in Source Panels” on page 43 for more information.

▌8▐ Message Area
The variable &CNMIMDL displays NetView error messages on line 23 of
the panel. If the application has not provided a value for CNMIMDL,
VIEW searches the global dictionaries (task, then common) for a variable
named CNMIMxxx, where xxx is the application name provided when
VIEW was invoked. If the variable is not found, VIEW searches for
CNMIMVIEW in the same dictionaries. Finally, if none of these variables is
present, the text from message BNH257I is displayed. The default English
text for BNH257I is “TO SEE YOUR KEY SETTINGS, ENTER ’DISPFK’”. The
text of message BNH257I can be changed in the message translation table.

See “Using PF Keys and Subcommands with VIEW” on page 57 for a list
of the subcommands that can be assigned to PF keys and “Customizing PF
Keys and Immediate Message Line” on page 25.

▌9▐ Command Line
NetView commands are typed on the command line. In a VIEW command

34 Customization Guide

with the NOINPUT option specified, a command line is defined by the
tilde (~) attribute symbol. The &CUR option identifies the cursor position
within the command line. Only one input field and only one &CUR option
is processed per panel. This option is useful for predefining a command in
the input field. Otherwise, the cursor defaults in the following order:
1. The last attribute variable that specified 'UY'
2. The first tilde field, if one is present
3. The first position in the upper-left corner

Coding the VIEW Command
Code the VIEW command as follows:

VIEW

►► VIEW compname pnlname
NOINPUT

INPUT

COMPAT

EXTEND
►◄

Where:

compname
Specifies the name (1–8 characters) that is used with PF key definitions by the
NetView program. The first character must be alphabetic. A distinct name must
be used for each separately rollable application.

pnlname
Specifies the name (1–8 characters) of the panel to be displayed.

NOINPUT
Specifies that the VIEW command does not return any information to the
procedure that invoked it. NOINPUT is the default. If the panel defines a
command line, the NetView program treats input as a command. With the
NOINPUT option, there is no need for your command procedure to invoke the
UNIQUE command.

See Figure 5 on page 32 for the PF keys provided by the NetView program
when you specify NOINPUT.

INPUT
Specifies that input values and AID information can be returned to the
procedure calling the VIEW command. INPUT also specifies that cursor
location can be received from and returned to the procedure calling the VIEW
command. When you use the VIEW command with the INPUT option, use the
UNIQUE command to enforce uniqueness (only one occurrence of the
command on the roll stack). See “Using the UNIQUE Command” on page 48
for more information.

COMPAT
Specifies that the functionality for this invocation of VIEW is compatible with
the behavior of VIEW for releases of the NetView program prior to Version 5
Release 1. Refer to the documentation for the prior release in which the
program using VIEW had been written for details of the functionality. The
COMPAT option is the default.

Chapter 3. Using the VIEW Command 35

EXTEND
Specifies that the extended functionality introduced in Tivoli NetView for z/OS
Version 5 Release 1 be used for this invocation of VIEW. Examples of this
functionality are:
v The ability to have VIEW pick up any local variable values that are specified

and use those values rather than any global variable values that have been
specified.

v The ability for VIEW to be interrupted with RC=2 when a message is
trapped.

The EXTEND option can be used to allow dynamic updating of variables
without the need to run separate programs (using global variables) to perform
the updating.

The EXTEND option is not supported for the NetView command list language.

Usage Notes®

v This table summarizes the difference between VIEW with the EXTEND option
and VIEW with the COMPAT option:

Table 8. Comparison of VIEW with the EXTEND option and VIEW with the COMPAT option

Functionality
Behavior using
VIEW=EXTEND

Behavior using
VIEW=COMPAT

Search order for variables v Locally defined
v Control variables
v Task global
v Common global

Value retrieved from
local or global
dictionary according
to how the variable
was defined in the
CLIST invoking
VIEW.

View interrupted with RC=0 when message
is trapped?

Yes No

Changed value for global variable stored in
appropriate global dictionary?

Yes, if specified on
GLOBALV before
VIEW

Yes, if specified on
GLOBALV before
VIEW

Changed value for global variable stored in
local dictionary?

Yes No, although this is
irrelevant for
NetView CLIST
language.

Note: All subsequent descriptions of VIEW in this book assume the extended
functionality introduced in Tivoli NetView for z/OS Version 5 Release 1.
However, in order to use this functionality, you must specify the EXTEND
option on the VIEW command.

v By specifying NOINPUT, you can use a command procedure to display online
help panels. See Chapter 4, “Modifying and Creating Online Help Information,”
on page 65, for more information on how to code help panel hierarchies.

v You can use the VIEW command to display data from messages obtained
through TRAP processing immediately upon receipt of the message. Updates are
also possible from non-message sources on a timed basis. For more information,
see “Dynamic Update Capabilities” on page 59.

v The VIEW command is intended to be used only from a command procedure. If
you use the VIEW command in command lists to display a panel, minimum

36 Customization Guide

processing should be done between exiting the view and the end of the
procedure. Operator input might be inhibited between the time the view is
ended and the end of the procedure.

v If a VIEW NOINPUT command is invoked with the same compname as a
previous VIEW command, then the previous VIEW command is canceled as well
as the command procedure that invoked that VIEW command.

Return Codes from VIEW and BROWSE
Table 9 lists and describes the return codes that can be received for the VIEW and
BROWSE command. The table also provides a brief description of the action you
must take.

Table 9. Return Codes from VIEW and BROWSE

Code Meaning Your Action

2 Trapped messages exist for this task. Discard or process the trapped
messages before calling VIEW or
BROWSE.

4 v Specified panel not found in CNMPNL1, CNMMSGF, or
CNMCMDF data sets

v Possible input/output (I/O) error.

Put panel definition in correct data
set or file.

8 Panel definition format not valid; no non-comment lines
found.

Correct format of panel definition.

12 You are not authorized to browse the member. Ask your system programmer to
redefine your authorization.

16 VIEW command processor invoked with parameters that are
not valid. Name1 must be 1 - 8 characters and name2 must be a
valid panel ID. Valid parameters are INPUT, NOINPUT, MSG,
NOMSG.

Correct command list to use valid
option.

24 Full-screen command processor is available to OST only. Do not invoke VIEW from a
non-OST.

28 Logical record length of panel not 80 bytes (VM only). Change file to logical record length of
80 bytes.

32 Unrecoverable error resulted from macro call. Error could be
that CNMMSGF or CNMCMDF has not been installed for
online message or command help. Also, refer to message
DWO050I in the NetView log.

Install CNMMSGF or CNMCMDF.
Contact IBM Software Support.

36 Unrecoverable internal programming error occurred. Also,
refer to message DWO050I in the NetView log.

Contact IBM Software Support.

40 Browse panel CNMBROWS, which is used for browsing
members, was not found.

Put CNMBROWS in correct data set
or file.

81 Panel definition format not valid; no text indicator line found,
or more than 49 option definitions found. (See Figure 5 on
page 32, for more information.)

Correct format of panel definition.

83 Panel definition format not valid; comment lines in wrong
place.

Correct format of panel definition.

Chapter 3. Using the VIEW Command 37

Displaying VIEW Return Codes with SHOWCODE
The SHOWCODE command list is used by command procedures to display
descriptions of the nonzero return codes returned from the VIEW command.

Code the SHOWCODE command as follows:

SHOWCODE

►► SHOWCODE rc panelid ►◄

Where:

rc Is the name of the variable that contains the return code for which you want to
display a description.

panelid
Specifies the name of the panel that the VIEW command attempted to display
before issuing the return code. This parameter is only required for return codes
4, 8, 12, 28, 81, and 83.

SHOWCODE displays descriptions of the nonzero VIEW return codes as messages.
Table 10 shows the return codes and their related message IDs.

Table 10. Nonzero VIEW Return Codes and Related Message IDs

Return Code Message ID

4 CNM335I
8 CNM336I

12 CNM337I
16 CNM338I
24 CNM340I
28 CNM341I
32 CNM342I
36 CNM343I
40 CNM9071
81 CNM388I
83 CNM390I

Before issuing SHOWCODE from a command procedure, check to make sure that
the return code is not zero. See “Example of a REXX Command List to Update a
Panel” on page 60 for an example that uses SHOWCODE to display error
messages from VIEW.

Controlling Color and Highlighting of Fields
You can change or add to the color and highlighting of the existing panels. Text
color and highlighting in the displayed panel are controlled by attribute symbols
or variables. After you code attribute symbols in the source panel, they appear as
blanks in the displayed panel.

Scanning for attribute symbols or variables in a particular line occurs only if
column 1 contains an attribute symbol or panel variable. Otherwise, the line is
displayed as is, in the default color and without variable substitution.

Note: Color and highlighting depend on the terminal you are using.

38 Customization Guide

Attribute Symbols
You can specify attribute symbols on the source panel to color or highlight text.
Edit the source panel and replace the blank space before the text with an attribute
symbol selected from the second column of Table 11 or Table 12.

Variables are parsed only at the first level. Nested VIEW variables are substituted
but not parsed. Therefore, color attribute symbols that are located in nested
variables are displayed as data.

An option specified in the header of a panel determines the set of attribute
definitions to use for that panel. If you specify no option (***), use the original set
(attribute set 1). Use attribute set 2 when you specify the option (*** AT2) on the
text indicator line of the panel definition. See “View-Based Help” on page 66 for
more information on the text indicator line.

Table 11. Set 1 Color and Highlighting Attributes

Attribute Set 1 Symbol
Hex
Character Intensity Field

White % X'6C' High Text

Reversed white } X'D0' High Text

Underscored white ! X'5A' High Text

White ~ X'A1' High Input

Turquoise $ X'5B' Normal Text

Underscored turquoise \ X'E0' High Text

Blue + X'4E' Normal Text

Reversed blue { X'C0' High Text

Green @ X'7C' Normal Text

Yellow ¬ X'5F' Normal Text

Pink ¦ X'6A' Normal Text

Red ¢ X'4A' High Text

Table 12. Set 2 Color and Highlighting Attributes

Attribute Set 2 Symbol
Hex
Character Intensity Field

White % X'6C' High Text

Reversed white } X'D0' High Text

Reversed red ! X'5A' High Text

White ~ X'A1' High Input

Turquoise $ X'5B' Normal Text

Reversed green \ X'E0' Normal Text

Blue + X'4E' Normal Text

Reversed blue { X'C0' Normal Text

Green @ X'7C' Normal Text

Yellow ¬ X'5F' High Text

Reversed yellow ¦ X'6A' High Text

Blinking red ¢ X'4A' Normal Text

Chapter 3. Using the VIEW Command 39

Displaying Special Attributes
If you want to display a particular symbol that doubles as an attribute within a
colored or highlighted row, place a double quotation mark (") in front of the
symbol. For example, if you want the left brace ({) to appear in text, enter "{ in the
source panel. If you want to display a double quotation mark ("), enter "". When
you use a double quotation mark (") in the source panel, the text following the
double quotation mark is shifted to the left in the displayed panel. When the same
hexadecimal values for these symbols are coded as part of double-byte character
text surrounded with shift-out and shift-in control characters, they are not treated
as attributes.

Using the + Attribute
Be careful how you use the plus sign (+) for the color blue. If you want to assign
the color blue to a variable defined by the NetView command list language,
enclose the plus sign within a pair of single quotation marks as follows:
&COLOR = ’+’

To assign the color blue to the REXX variable A so that its contents, G, are
changed to blue, do the following:
A = ’+G’

Without the pair of single quotation marks, the NetView program interprets the
plus sign as a continuation character.

Using the $ and the @ Attributes
Because the $ character and the @ character are often used as data inside a
command list or REXX variable, VIEW treats them differently when defined in a
panel or in a variable. When in a panel, they are treated as attribute symbols as
described in Table 11 on page 39 and Table 12 on page 39. When in a variable, they
are treated as data. If the associated attributes are needed inside a variable,
substitute the greater than (>) and less than (<) signs as synonyms for @ and $
respectively. Use the respective synonym in your command list. In the following
NetView command list example, the AMOUNT field displays the string $1,000 in
turquoise and the HEIGHT field displays the string @ 6 feet in green.
&AMOUNT = ’<$1,000’
&HEIGHT = ’>@ 6 feet’

This is what the same example would look like in REXX.
AMOUNT = ’<$1,000’
HEIGHT = ’>@ 6 feet’

When they are not used in a variable, the less-than and the greater-than symbols
are displayed as characters.

Attribute Variables
Attribute variables are assigned in the command procedure that drives the view
panel. An alternative to defining attribute symbols on the panel or within the
variable data is to define attribute variables that are associated with panel
variables. Attribute variables describe attributes associated with panel variables
and their text following on the same line. Using an attribute variable provides a
wider range for attribute selection and allows you to define input fields. When you
use an attribute variable, the contents of the associated panel variable are not
scanned for attribute symbols.

40 Customization Guide

An attribute variable name is formed by concatenating a dollar sign onto the front
of the panel variable name. For example, in NetView command list language, the
attribute for panel variable &V1 is defined in a variable called &$V1.

In REXX, PL/I, and C, the ampersand (&) is not used. For a PL/I or C program,
attribute variables must be set using CNMVARS in PL/I or Cnmvars in C.

The following is the syntax for the contents of an attribute variable:

►► attribute variable = ' tv tv tv... ' ►◄

where tv is the type value pair. Multiple pairs of the same type in one attribute
variable are allowed. The last pair is accepted and the previous pairs are ignored.

The values for type value are as follows:

tv =
type value

A =
Alarm

AN No audible alarm

AY Audible alarm (beep) when panel is presented

Note: The alarm specification applies only to the attribute variable for
the immediate message line ($CNMIMDL).

C =
Color

CB Blue

CD The default device color when a color value is not specified

CG Green

CP Pink

CR Red

CT Turquoise

CW White or neutral

CY Yellow

F =
Field

FA Protected; data cannot be entered on displayed panel; FA is the default

FI Unprotected; data can be entered on displayed panel

H =
Highlight

HB Flashing

HD The default extended highlighting when a highlighting value is not
specified

HR Reverse video

Chapter 3. Using the VIEW Command 41

HU Underscored

I =
Intensity

ID Dark, nondisplayable

IH High intensity

IN Normal intensity; the default when an intensity value is not specified

U =
Cursor

UN The cursor is not placed at the beginning of this field; UN is the
default.

UY The cursor is placed at the beginning of this field. UY specifications for
multiple variables cause the last variable specified to be accepted and
the previous variables to be ignored.

Notes:

1. If you do not want the cursor to be associated with a particular
variable, you can place the cursor in any row and column. Use the
VIEWICROW and VIEWICCOL variables in the procedure that calls
VIEW with the INPUT option. See “Full-Screen Input Capabilities”
on page 50 for more information on the VIEWICROW and
VIEWICCOL variables.

2. If you use the VIEWICROW and VIEWICCOL variables and also
specify UY on an attribute variable, the cursor is positioned by the
attribute variable.

3. If you do not use the VIEWICCOL and VIEWICROW variables or
specify a cursor for any attribute variable on a panel, the cursor is
placed at the beginning of the first input field.

Use one or more blanks to separate the type value pairs. The following is a NetView
command list language example where &V1 is defined as a protected field with
high intensity in red. &V2 is defined as a protected field in high intensity, in
turquoise, with the cursor placed in the field.
&$V1 = ’FA IH CR’
&$V2 = ’IN IH CT UY IH’

In the following REXX example, V1 is defined as an input variable (unprotected
field) with no cursor. For V2, all the defaults are used.
$V1 = ’FI UN’
$V2 = ’ ’

Attributes defined by attribute variables or attribute symbols apply until one of the
following is encountered:
v The explicit placement of an attribute symbol later in the line
v A variable later in the line that has one of the following:

– A valid corresponding attribute variable that specifies new attributes
– No valid corresponding attribute variable, but contains one or more attribute

symbols
v The end of the line (or the end of the panel, if this is the last line).

42 Customization Guide

Constants or variables defined on a panel can become part of an input field and
are updated only when you type over some portion of the input field. When you
enter data in an input field, the entire contents of the input field are assigned to
the panel variable.

The first byte of a field defined by a panel variable (the &) is used for attribute
specification, and is followed by the contents of the variable. If an attribute
variable corresponds to a panel variable, it takes effect at this first byte even if the
panel variable is not found (and is replaced by blanks).

Note: If an attribute variable contains a syntax error and the NetView log is active,
message CNM944I is written to the log.

Displaying Variables in Source Panels

When the VIEW command attempts to resolve a variable name coded on the panel
definition, it searches the following environments in the following order until it
finds a defined variable that contains a value:
v Variables assigned in the command procedure
v Control variables (such as &OPID)
v Task global variables
v Common global variables

If a variable name specified on the panel is not defined to any of the previous
environments, it is displayed as a string of blanks. Note that variables that are
defined as control or global variables can also be assigned in the calling command
procedure. The value assigned to it is displayed on the panel instead of the control
or global variable value.

If the associated attribute variable is not defined, the substituted value of a
variable is scanned for attribute symbols. The located attribute symbols are used in
controlling color, highlighting, and data fields. If symbols are to be displayed as
symbols and not used as attributes then code an associated attribute variable for
the variables. This causes the symbols in the data to be treated as data instead of
attribute variables.

When an attribute symbol is to be displayed as data, special rules must be
followed. See “Displaying Special Attributes” on page 40 and “Attribute Variables”
on page 40 for more information on these rules.

Note: If the XVAR option is not coded on the panel text indicator line, use only 1
to 11 alphanumeric characters (A–Z and 0–9) for the variable names in VIEW panel
definitions. If the XVAR option is coded, variable names can be up to 31 characters
long and contain periods. See “Compound Symbols” on page 45 for more
information. Alphabetical characters must be in uppercase. Variable names also
must conform to any other variable naming conventions set by the language
invoking VIEW if the variable is to be referenced by that language. For example,
variable names used in PL/I, C, and REXX must start with an alphabetical
character.

Although global variables can be found and displayed using VIEW, they can also
be referenced by the command procedure prior to running the VIEW command.

Chapter 3. Using the VIEW Command 43

Global variables are defined by &TGLOBAL, &CGLOBAL, or GLOBALV in
NetView command list language, GLOBALV in REXX, CNMVARS or GLOBALV in
PL/I, or Cnmvars or GLOBALV in C.

Reference: Refer to IBM Tivoli NetView for z/OS Programming: REXX and the
NetView Command List Language or IBM Tivoli NetView for z/OS Programming: PL/I
and C for more information about global variables.

For the VIEW command to find local or attribute variables when invoked from a
high-level language program, the variable must be set using CNMVARS in PL/I or
Cnmvars in C.

A REXX user can update the values of global variables using the VIEW command
as long as the following tasks are performed for the variable varname before
starting VIEW:
1. Define the field used by the global variable on the VIEW panel as an input

field using an attribute variable.
2. Issue a GLOBALV DEFT (or DEFC) varname command to define the global

variable.
3. Ensure that varname is defined (having a non-null value) in the common or task

global dictionary. Use GLOBALV PUTT (or PUTC) varname to store a value, if
necessary.

If all the steps just listed are followed, the global variable varname is updated.
Otherwise, the REXX local variable varname is displayed and updated. When VIEW
accesses a global variable this way, any REXX local variable with the same name is
also modified by VIEW. In order to access the new value for a global variable, the
REXX user must issue a command such as GLOBALV GETT (or GETC) to get a
local copy of the value.

If you specify a NetView control variable (for example, APPLID or OPID) on a
VIEW panel, and the field is defined as an input field, the updated value is only
stored in the command procedure environment. Control variable values cannot be
updated.

The following REXX example shows how you can use VIEW to update a global
variable:
/* */
’GLOBALV GETT XYZ’
IF LENGTH(XYZ) = 0 THEN
DO
XYZ = ’ ’
’GLOBALV PUTT XYZ’

END
$XYZ = ’FI’
’VIEW NAME1 TESTPANL INPUT EXTEND’
SAY ’XYZ IS NOW’ XYZ
EXIT

If the length of the value that is assigned to the variable exceeds the length of the
variable in the source panel, the following rules apply:
v If the variable is followed by alphanumeric or special characters in the panel

definition, such as !, ¢, \, ¦, @, #, $, %, ¬, &, ", +, the value is truncated.
v If the variable is followed by characters that are not alphanumeric, and are not

among the special characters, such as !, ¢, \, ¦, @, #, $, %, ¬, &, ", +, the
characters are overwritten by those of the value.

44 Customization Guide

v If the length of the value exceeds the space remaining in the line with line
length that is determined by 3270 device (emulator) characteristics and the text
indicator in the panel definition, for example, WIDE, the displayed value is
truncated at the end of the line. The NetView program will not use multiple
lines to display a value.

If the value assigned to the variable contains double-byte text, all the double-byte
text must be within DBCS shift-out and shift-in characters. If the panel cannot
display all the double-byte text within a pair of DBCS shift-out and shift-in
characters, VIEW displays all the text that fits and displays a period (.) to indicate
a truncated character.

For example, if a variable named &DBCSTEXT is defined with a value of NetView
Help Menu in Kanji, this value might be truncated because the field on the panel is
too short, because the operator has scrolled the panel to the right or left, or
because an application that uses VIEW has truncated data. For instance, the
NetView WINDOW command uses VIEW to handle double-byte character
truncation. Here is the hexadecimal representation of the double-byte Kanji
characters, showing the text length:
....+....1....+....2....+....3..

04945494D4545444A4A4D444A4945450
E39363530343835323F373537373438F

If the panel definition allows fewer than 32 characters for the value of &DBCSTEXT,
or if the operator scrolls the text so that fewer than 32 characters can be displayed
on the panel, VIEW displays all characters that will fit. If VIEW can only display
one-half of a double-byte character, it substitutes a period (.) for the displayable
part of the character in the same way that BROWSE handles leading and trailing
double-byte text truncation for netlogs. In this example, if the first two bytes were
truncated, VIEW would substitute a shift-out (X'0E') for the non-displayable last
half of the first double-byte character (X'4399'). If the first three bytes were
truncated, VIEW would substitute a period and a shift-out character (X'4B0E') for
the entire second double-byte character (X'4356').

If an operator tries to display a VIEW panel that does not have properly defined
double-byte shift-out and shift-in pairs, a data stream that is not valid will be sent
to the device, and unpredictable results, such as the operator being logged off, will
occur. Examples of DBCS definitions in which the double-byte shift-out and shift-in
characters are improperly matched:
v A greater number of shift-out or shift-in characters (not paired)
v One pair split between two or more variables
v One pair split between a variable and a panel definition
v One pair split across more than one line of a panel

Compound Symbols
A compound symbol contains at least one period and at least one other character.
It cannot start with a digit or a period. If there is only one period, the period
cannot be the last character.

The name begins with a STEM (part of the symbol up to and including the first
period), which is followed by PARTs of the name (delimited by periods) that are
constant symbols, simple symbols, or null. A constant symbol starts with a digit
(0–9) or a period. A simple symbol contains no periods and does not start with
digits (0–9).

Chapter 3. Using the VIEW Command 45

VIEW starts with a compound symbol coded in a panel. VIEW then creates a
derived variable name by replacing PARTs with their values. VIEW then requests
the value of the derived variable for display in the panel.

This example is a small extract from a REXX program:

Implementation Maximum
All HLL and REXX variables are restricted to 31 characters when the panel text
indicator has the XVAR option; otherwise, the limit is 11. NetView command list
language does not support compound variables or variable names longer than 11
characters. It is important to note the differences between the way REXX displays
the string and the way VIEW displays the string.

Usage Notes

1. VIEW does not support mixed case symbols defined in REXX. For example, a.c
in Figure 6 is displayed as 5 in VIEW, but REXX will display it as Bill.

2. VIEW displays blanks for the value of the compound variable if the final value
is undefined, null, or not valid.
In Figure 6 a.a, c.a, and x.d.4 are displayed as blanks in VIEW.

3. VIEW does not distinguish unknown compound variable PARTs from those
with null values. When a PART is null or unknown, its NAME is used in
building the compound variable name. In Figure 6, VIEW searches for &X.D.4,
not &X..4, and thus cannot find Annie.

4. Enter *** XVAR in the text indicator section of your panel definition in order to
use compound variables. See Text Indicator for more information.

Issuing Commands from Command Procedures
When a command is issued directly from a command procedure, the procedure is
suspended until that command completes. When the called command is complete
and the return code is available, the procedure resumes. If the called command is a
long-running command, it and the calling procedure form a group that is treated
as a unit by the NetView ROLL command (roll group).

a=3 /* assigns ’3’ to the variable ’A’*/
b=4 /* ’4’ to ’B’ */
c=’Fred’ /* ’Fred’ to ’C’ */
a.b=’Fred’ /* ’Fred’ to ’A.4’ */
a.fred=5 /* ’5’ to ’A.FRED’ */
a.c=’Bill’ /* ’Bill’ to ’A.Fred’ */
c.c=a.fred /* ’5’ to ’C.Fred’ */
x.a.b=’Annie’ /* ’Annie’ to ’X.3.4’ */
d=’’ /* ’’ to ’D’ */
e=’4’ /* ’4’ to ’E’ */
x.d.e=’Annie’ /* ’Annie’ to ’X..4’ */
say a b c a.a a.b a.c c.a a.fred x.a.4 x.d.4
/* */
/* Rexx will display the following values: */
/* 3 4 Fred A.3 Fred Bill C.3 5 Annie Annie*/
/* If these same variables are displayed on a View panel */
/* (preceded by ’&’ and in upper case) and if the View panel */
/* definition includes the XVAR option, View displays the following */
/* values: */
/* 3 4 Fred Fred 5 5 Annie */

Figure 6. Example of a REXX Program Requesting Values of Variables for a VIEW

46 Customization Guide

Note: The BGNSESS FLSCN command is an exception because it allows a calling
procedure to complete before the session begins by using the MINOR option of
DSIPUSH. Refer to IBM Tivoli NetView for z/OS Programming: Assembler for
information about DSIPUSH.

Grouping commands and procedures is beneficial if the intent is to build a
hierarchy of related panels, using different procedures to build each one. You
should not group commands and procedures when running unrelated commands,
such as those received from an operator.

To disassociate an unrelated command from the calling procedure, use the CMD
command. To illustrate this, assume that the variable cmdline contains an operator's
command that was entered on your panel. You can queue the cmdline command
asynchronously by issuing one of the following in your REXX command
procedure:
’CMD HIGH ’ cmdline
’CMD LOW ’ cmdline

The HIGH or LOW parameter of the CMD command indicates the priority at
which the command should be queued.

Note: Issuing the CMD command with the HIGH parameter usually interrupts
other processing, allowing the queued command to run.

For example, suppose an operator enters the STATMON command on the
command line of your panel. By using the CMD command, you can queue the
STATMON command rather than calling it directly. This allows the operator to roll
back to your command procedure from STATMON, even though STATMON is not
complete. Refer to IBM Tivoli NetView for z/OS Programming: Assembler for more
information about the ROLL function and the NetView online help for more
information about the CMD command.

Queuing, rather than calling a command, protects your procedure from any reset
condition the queued command encounters.

Creating a Rollable Component with VIEW
A NetView component is a command or command procedure that controls the
terminal's screen, provides for operator entry of arbitrary NetView commands, and
is capable of resuming when such commands are complete. In a command
procedure, you can create a rollable component using VIEW to provide the
necessary screen control.

If you specify the NOINPUT option, VIEW handles the operator command
interface for you. If you specify the INPUT option on your VIEW command, VIEW
returns the operator input to your procedure in the form of named variables, one
or more of which might be treated as a command.

The commands contained in these variables must be in uppercase for the NetView
program. PL/I and C command procedures should verify that these command
strings are in uppercase before issuing CNMCMD. The NetView command list
language provides the UPPER command for translating the contents of a variable
to uppercase. REXX command lists can use the UPPER instruction to ensure that
commands are in uppercase.

Chapter 3. Using the VIEW Command 47

Using the UPPER Command
Use the UPPER command to change the contents of the specified variables to
uppercase.

The format of the UPPER command is:

UPPER

►► UPPER ▼

,

variable ►◄

Where:

variable
Specifies the 1- to 11-character name of the variable to be translated to
uppercase. The comma in the repeat separator indicates that you can optionally
specify more than one variable name on an UPPER command.

Example:
UPPER CMDLINE
CMD HIGH &CMDLINE

Usage Notes

1. Do not specify the leading ampersand (&) in front of the variable name.
2. If you specify more than one variable, all variables are translated, even if one of

the variables has an error condition (not found or the length is not valid).
3. The UPPER command is provided in the NetView command list language only.

A similar function is available to REXX command lists with the REXX UPPER
instruction.

4. The UPPER command should not be concatenated with other commands in a
command string.

Return Codes: The return codes for this command are as follows:

0 Successful completion of all specified variables

4 At least one variable not found, or at least one variable is not valid

8 At least one variable length not within range

12 At least one variable not found and at least one other variable length not
within range

16 Not invoked from a command procedure

20 No variables specified

Using the UNIQUE Command
With the UNIQUE command, you can search the roll stack for a component that
has a subcomponent with the same member name (for command lists and REXX)
or module name (for PL/I and C) as the issuing command procedure. If such a
component is found, the UNIQUE command allows only one of the two
components to remain on the roll stack, either the issuing component or the older
component.

The format of the UNIQUE command is:

48 Customization Guide

UNIQUE

►► UNIQUE
CANCEL

CANCEL
PROMOTE

►◄

Where:

CANCEL
Specifies to reset (CANCEL) the roll group containing the matching element on
the roll stack as the currently running component. CANCEL is the default.
(The issuing component remains on the roll stack.)

PROMOTE
Specifies to position (PROMOTE) the roll group containing the matching
element on the roll stack as the currently running component.

Usage Notes

1. The UNIQUE command is valid only when issued from a command list.
2. The NetView program allows an operator to start many copies of the same

command processor. You might not want more than one copy, as when
creating a NetView component. By using DSIPOP or DSIPUSH with the
PROMOTE option, assembler programmers guarantee the uniqueness of
long-running commands. Using the UNIQUE command guarantees
uniqueness in a command procedure.

3. Issuing UNIQUE from your procedure has no effect (and gives a return code
of 0) if the current copy of the procedure is the only one active. An active
long-running command or procedure is one that is in any stage of its
processing but is not yet complete. Active procedures include procedures that
are suspended (blocked) by some other long-running command. If another
copy of the same procedure exists under the same task, the UNIQUE
command affects the entire roll group that includes that copy.

4. When you use UNIQUE with the CANCEL option (the default format), the
calling procedure is temporarily suspended while the older copy is given
control with a reset condition. The NetView program suppresses the
cancellation messages normally issued when a procedure is reset. When the
canceled copy of the procedure and any others in its group complete, the
issuing copy resumes with the next line after the UNIQUE command. The
return code is set to 4.

5. Using the UNIQUE command with the PROMOTE option moves the previous
copy of the calling procedure and its roll group to the top of the roll stack,
ready to resume when the copy issuing UNIQUE completes. The return code
is set to 4. The procedure invoking UNIQUE should exit to allow the
promoted procedure to regain control. An exit code -5 is used to let the caller
know that it can now regain control.

6. When you use UNIQUE in NetView command list language, code a
suppression character (&SUPPCHAR) to suppress unwanted command echoes
that occur when the command has an error. Code SIGNAL ON HALT in your
REXX procedures to suppress the REXX cancellation message. The HALT
subroutine should return a -5 return code. When you code SIGNAL ON
ERROR in your REXX procedures, a return code of 4 signals the error label.

Chapter 3. Using the VIEW Command 49

7. No special processing is required for the ROLL command. It is issued in the
same way as other NetView commands. To be consistent with other NetView
applications, set PF6 and PF18 to issue the ROLL command.

8. Parameter synonyms are supported.
9. Parameter authorization restrictions are not appropriate for the UNIQUE

command.
10. Upon cancellation of a component, REXX, PL/I, and C command procedures

can perform a cleanup.

Return Codes: The return codes for this command are as follows:

0 The calling procedure is unique.

4 A matching procedure was found. Action successful.

12 Environment is not valid (not called from a procedure).

16 Syntax error, argument is not valid.

Full-Screen Input Capabilities
The VIEW command can receive the following values from the calling procedure:
v The cursor row position
v The cursor column position

You specify this information with the INPUT keyword and by coding
VIEWICROW and VIEWICCOL in the calling procedure. When the panel is
displayed, the cursor is positioned at the location specified by VIEWICROW and
VIEWICCOL. If you used an attribute variable to associate the cursor with a
variable, that overrides cursor positioning by VIEWICROW and VIEWICCOL.
Table 13 on page 51 describes these two variables.

The VIEW command allows the following to be returned to the invoking
procedure:
v The contents of multiple input-capable variables on a panel
v The attention identifier (AID) information
v The cursor location
v The number of panel rows put out by the VIEW command
v The number of panel columns put out by the VIEW command

You specify this information with the INPUT keyword and by coding an attribute
variable with the FI type value pair.

When you use the INPUT option, an input field is available only if you defined an
attribute variable specifying FI. (See “Attribute Variables” on page 40 for
information on the type value pair.)

When the panel is displayed, it contains the variable values that you can modify
by typing over them. The modified variables are returned to the invoking
procedure when you press the AID key. Note that if a variable's value is originally
truncated for a display, the modified truncated value would be used to set the
variable at this time. Table 14 on page 51 describes the AID key and the variables
that are set on return to the calling command procedure.

50 Customization Guide

Table 13. Variables Specified in the Calling Command Procedure

REXX, PL/I, and C
NetView Command
List Language Description

VIEWICCOL &VIEWICCOL The cursor location (column) set by the
command procedure that calls VIEW. Use
this variable with VIEWICROW to position
the cursor any place on the panel. An
acceptable value is a positive or negative
integer less than or equal to the number of
columns on the panel. A positive integer
positions the cursor relative to the left side;
a negative integer, relative to the right side.
If you specify an integer greater than the
number of columns on the panel, the cursor
is placed at the beginning of the first input
field. See Figure 7.

VIEWICROW &VIEWICROW The cursor location (row) set by the
command procedure that calls VIEW. Use
this variable with VIEWICCOL to position
the cursor any place on the panel. An
acceptable value is a positive or negative
integer less than or equal to the number of
rows on the panel. A positive integer
positions the cursor relative to the top; a
negative integer, relative to the bottom. If
you specify an integer greater than the
number of rows on the panel, the cursor is
placed at the beginning of the first input
field. See Figure 7.

Table 14. Variables Set on Return to Calling Command Procedure

REXX, PL/I, and C
NetView Command
List Language Description

VIEWAID &VIEWAID The AID key used to enter the input.

Assume a panel 80 x 24, and the calling procedure specifies:

VIEWICCOL = 2
VIEWICROW = 2

The cursor is placed in the second column from the left, second row from the top.

VIEWICCOL = -2
VIEWICROW = -2

The cursor is placed in the second column from the right, second row from the bottom.

VIEWICCOL = 82
VIEWICROW = 22

The cursor is placed at the beginning of the first input field because one of the variables
specifies a value that is greater than the panel size.

Figure 7. VIEWICCOL and VIEWICROW Examples.

VIEWICCOL and VIEWICROW Examples

Chapter 3. Using the VIEW Command 51

Table 14. Variables Set on Return to Calling Command Procedure (continued)

REXX, PL/I, and C
NetView Command
List Language Description

VIEWCURCOL &VIEWCURCOL The cursor location (column) when the AID
key is pressed.

VIEWCURROW &VIEWCURROW The cursor location (row) when the AID
key is pressed.

VIEWCOLS &VIEWCOLS The number of columns output by the
VIEW command. The default number will
be 80 if neither WIDE nor OPTROW is
coded on the panel text indicator line, or if
the terminal only supports 80 columns.
Otherwise, VIEWCOLS is set to the number
of columns supported by the terminal. See
Chapter 4, “Modifying and Creating Online
Help Information,” on page 65 for more
information.

VIEWROWS &VIEWROWS The number of rows (lines) of the given
panel that were output by the VIEW
command, which is determined by the
number of regular data lines in the source
panel, the number of optional data lines in
the source panel, and the number of rows
available on the output terminal. See
Chapter 4, “Modifying and Creating Online
Help Information,” on page 65 for more
information.

The contents of the VIEWAID variable are defined as PF1 through PF24, PA1, PA2,
PA3, or the ENTER key.

If you press PA1, PA2, or PA3, only the AID (VIEWAID) information is returned to
the invoking procedure. The cursor row, column locations, and any input fields
defined on a panel are not returned.

Note: If you press the ATTN key on an SNA terminal, VIEW with
INPUT/NOINPUT ends.

Figures Figure 8 on page 53 through Figure 11 on page 56 illustrate source panels
using VIEW with the INPUT option to create a rollable component. Figure 8 on
page 53 and Figure 9 on page 53 show the source panels containing input-capable
variables to be replaced. These panels use attributes from attribute set 2 (see
Table 12 on page 39).

52 Customization Guide

“Example of a REXX Command List that Drives a Rollable Component” on page
54 is an example of a REXX command list that invokes VIEW with the INPUT
option to display PANEL1. The command list assigns initial values to the VARIN1

/**/
/* FIRST PANEL DISPLAYED */
/**/
*** AT2
+PANEL1
$ X==X
$ | |
$ | |
$ |% PPPPPPP AAAAAAA NN NN EEEEEEEE LL 111 $ |
$ |% PP PP AA AA NNN NN EE LL 11 11 $ |
$ |% PPPPPPPP AAAAAAAAA NN NN NN EEEEEEEE LL 11 $ |
$ |% PP AA AA NN NNN EE LL 11 $ |
$ |% PP AA AA NN NN EEEEEEEE LLLLLLLL 11111111$ |
$ |--|
$ | INPUT VARIABLE 1 = &VARIN1 $|
$ | INPUT VARIABLE 2 = &VARIN2 $|
$ | |
$ | You entered: &VAROUT1 |
$ | You also entered: &VAROUT2 |
$ X==X
$
$Enter a command on the command line OR...
$Enter NEXT or press PF8 to view the next panel.
$
%Action==> &COMMAND %
$ PF2= End
$ PF6/PF18= Roll PF8=Next

Figure 8. Source for First Panel with Input-Capable Variables and Command Line.

Source for First Panel with Input-Capable Variables and Command Line

/**/
/* SECOND PANEL DISPLAYED */
/**/
*** AT2
+PANEL2
$ X==X
$ | |
$ | |
$ |% PPPPPPP AAAAAAA NN NN EEEEEEEE LL 22222222 $ |
$ |% PP PP AA AA NNN NN EE LL 22 $ |
$ |% PPPPPPPP AAAAAAAAA NN NN NN EEEEEEEE LL 22222222 $ |
$ |% PP AA AA NN NNN EE LL 22 $ |
$ |% PP AA AA NN NN EEEEEEEE LLLLLLLL 22222222 $ |
$ | |
$ |--|
$ | |
$ | |
$ | |
$ | |
$ | |
$ X==X
$
$Enter a command on the command line OR...
$Enter BACK or press PF7 to view the previous panel.
$
%Action==> &COMMAND %
$ PF2= End
$ PF6/PF18= Roll PF7= Previous

Figure 9. Source for Second Panel with Command Line Only.

Source for Second Panel with Command Line Only

Chapter 3. Using the VIEW Command 53

and VARIN2 input-capable variables in the source panel. The command list also
returns the AID information and command line input to the caller.

Example of a REXX Command List that Drives a Rollable
Component
/***/
/* EXAMPLE: NETVIEW COMPONENT USING THE VIEW COMMAND */
/***/
SIGNAL ON HALT
/***/
/* RESUME OLD COPY IF ONE EXISTS */
/***/
’UNIQUE PROMOTE’
if rc = 4 then EXIT -5 /* -5 will cancel caller if it exists */
SIGNAL ON ERROR /* any nonzero rc other than as a result of the */
/* UNIQUE command is an error */
/***/
/* set up VAR1 and VAR2 as input capable fields */
/***/
$VARIN1 = ’FI IN CR HB UN’
$VARIN2 = ’FI IH CG HR UN’
/***/
/* set up COMMAND as an input command line using an attribute */
/* variable. Also define the cursor to stop at this field. */
/***/
$COMMAND = ’FI UY’

VARIN1 = ’INITIALIZE 1’
VARIN2 = ’INITIALIZE 2’

Do forever
COMMAND = ’00’X /* COMMAND = nullchar (this clears */

/* the command line and provides */
/* for insert capability) */

’VIEW USERAPPL PANEL1 INPUT’
UPPER COMMAND
VAROUT1 = VARIN1
VAROUT2 = VARIN2
SELECT
When viewaid = ’PF2’ then exit /* Quit if PF2 */
When viewaid = ’PF6’ then CMD HIGH ROLL /* Roll if PF6 */
When viewaid = ’PF8’ then call PANEL2 /* Next panel if PF8 */
When viewaid = ’ENTER’ then

SELECT
when command = NEXT then call PANEL2
/***/
/* Assume any other input given on command line is */

/* to be issued to NCCF */
/***/
when COMMAND ¬= ’ ’ then

DO
’CMD HIGH’ COMMAND
END

otherwise nop
END

OTHERWISE nop
End /* select */

End /* Do forever */
PANEL2:
Do forever

COMMAND = ’00’X /* COMMAND = nullchar (this clears */
/* the command line and provides */
/* for insert capability) */

’VIEW USERAPPL PANEL2 INPUT’
UPPER COMMAND
SELECT
When viewaid = ’PF2’ then exit /* Quit if PF2 */

54 Customization Guide

When viewaid = ’PF7’ then return /* Previous panel PF7*/
When viewaid = ’PF6’ then ’CMD HIGH ROLL ’ /* Roll if PF6 */
When viewaid = ’ENTER’ then

SELECT
When COMMAND = ’BACK’ then return
/***/
/* Assume any other input given on command line is */
/* to be issued to NCCF */
/***/
when COMMAND ¬= ’ ’ then

DO
’CMD HIGH’ COMMAND
END

otherwise nop
END

OTHERWISE nop
End /* select */

End /* Do forever */
RETURN
ERROR:
EXIT -1 /* -1 means "FATAL ERROR IN NESTED PROCEDURE" */
HALT:
EXIT -5 /* -5 means "CANCEL REQUESTED" */

Figure 10 on page 56 is an example of the first panel created from this command
list. See Figure 8 on page 53 for the source for this panel. The variables VARIN1
and VARIN2 are replaced with the actual values INITIALIZE 1 and INITIALIZE 2,
respectively. The attribute specification is defined by $VARIN1 and $VARIN2 (see
“Attribute Variables” on page 40 for more information).

The following attributes are for VARIN1 where the length of the input field
continues until the next attribute symbol is encountered. In this case, the attribute
symbol is %.

VARIN1 attributes are as follows:
v Input, tab (unprotected)
v Normal intensity
v Red
v Flashing
v No cursor position

The following attributes are for VARIN2 where the length of the input field
continues until the end of the line.

VARIN2 attributes are:
v Input, tab (unprotected)
v High intensity
v Green
v Reverse video
v No cursor position

COMMAND attributes are:
v Input, tab (unprotected)
v Position the cursor at the beginning of this field

Chapter 3. Using the VIEW Command 55

Figure 11 shows a second display panel from the command list. See Figure 9 on
page 53 for the source for this panel.

Returning Command Line Input
When you specify NOINPUT for the NetView program to start processing at the
command line, you should define a tilde (~) on the panel to be displayed.

PANEL1
X==X
| |
| |
| PPPPPPP AAAAAAA NN NN EEEEEEEE LL 111 |
| PP PP AA AA NNN NN EE LL 11 11 |
| PPPPPPPP AAAAAAAAA NN NN NN EEEEEEEE LL 11 |
| PP AA AA NN NNN EE LL 11 |
PP AA AA NN NN EEEEEEEE LLLLLLLL 11111111
INPUT VARIABLE 1 = INITIALIZE 1
INPUT VARIABLE 2 = INITIALIZE 2
You entered:
You also entered:
X==X

Enter a command on the command line OR...
Enter NEXT or press PF8 to view the next panel.

Action==> _
PF2= End

PF6/PF18= Roll PF8=Next

Figure 10. Display Panel of Component with Variables Replaced by REXX Command List.

Display Panel of Component with Variables Replaced by REXX Command List

PANEL2
X==X
| |
| |
| PPPPPPP AAAAAAA NN NN EEEEEEEE LL 22222222 |
| PP PP AA AA NNN NN EE LL 22 |
| PPPPPPPP AAAAAAAAA NN NN NN EEEEEEEE LL 22222222 |
| PP AA AA NN NNN EE LL 22 |
| PP AA AA NN NN EEEEEEEE LLLLLLLL 22222222 |
X==X

Enter a command on the command line OR...
Enter BACK or press PF7 to view the previous panel.

Action==> _
PF2= End

PF6/PF18= Roll PF7= Previous

Figure 11. Display Panel of Component.

Display Panel of Component

56 Customization Guide

The tilde definition defines an input field that is returned to the NetView program
as a command. An &CUR coded after the tilde on the same line determines where
the cursor is positioned.

The &CUR is useful for predefining a partial command. For example:
~ V NET,ACT,ID=&CUR

coded on a panel displays:
V NET,ACT,ID=_

with the remaining ID to be completed by the operator.

If more than one is defined on the panel, the last &CUR is processed and previous
ones are ignored. If more than one tilde (~) is defined on the panel, the first tilde is
processed and any subsequent ones are changed to a percent (%) sign.

If you specify INPUT for the NetView program, code the command line as you
would code any other input-capable field. Do not use the &CUR and tilde
definitions. The procedure that displays the panel issues the commands. See
“Issuing Commands from Command Procedures” on page 46 for information on
issuing CMD HIGH.

Using PF Keys and Subcommands with VIEW
PF keys and VIEW subcommands are treated differently with the two view
options, INPUT and NOINPUT. The following two sections explain the differences.

Using PF Keys and Subcommands with the NOINPUT Option
When you use VIEW with the NOINPUT option, you can define your PF keys
using the PFKDEF command. The values you assign can be NetView commands,
or VIEW subcommands. The following is a list of the VIEW subcommands; some
have the same name as similar NetView commands:

Help Displays the help panel previously coded:
HELP=helppan

End Exits to the originating component.

Return
Returns to the last panel from which a selection was made.

Top Returns to the first page of a multipage panel.

Bottom
Goes to the last page of a multipage panel.

Backward
Returns to the previous page of a multipage panel.

In addition to assigning the Backward subcommand to a PF key, you can
also enter the following command on the command line to scroll backward
a specific number of pages:

B n Scrolls backwards n number of pages or panels.

Forward
Goes to the next page of a multipage panel.

Chapter 3. Using the VIEW Command 57

In addition to assigning the Forward subcommand to a PF key, you can
also enter the following command on the command line to scroll forward a
specific number of pages:

F n Scrolls forward n number of pages or panels.

Entry Point
Shows the panel that the operator first saw upon entry to help.

Reference: Refer to the PFKDEF command in the IBM Tivoli NetView for z/OS
Administration Reference for more information.

Using PF Keys and Subcommands with the INPUT Option
When you use VIEW with the INPUT option, you can use settable PF keys defined
using the PFKDEF command or you can interpret PF keys in your command list.
You need to code the panel definition and parameters differently depending on the
option you select.

Using Settable PF Keys
To use settable PF keys with VIEW, complete each of the following steps:
1. In the panel definition, create a variable named CNMIMDL that has no

attribute-variable ($CNMIMDL) which makes it an input field. Define the
immediate message line by putting &CNMIMDL in column 1 of the line. Do
not put anything else on that line.
If the VIEW application has not provided a value for CNMIMDL, VIEW
searches the global dictionaries (task, then common) for a variable named
CNMIMxxx, where xxx is the application name provided when VIEW was
invoked. If this variable is not found, VIEW searches for CNMIMVIEW in the
same dictionaries. This is similar to the way keys are set for VIEW applications.
Finally, if none of these variables are present, the text from message BNH257I is
used.

2. In the panel definition, create a variable named CNMCMDL that does have an
attribute-variable ($CNMCMDL) which makes it an input field. CNMCMDL
defines the command area.

3. Optionally, create another variable named CNMDIMD to define a default
immediate message. This message is displayed by the NetView program
whenever the CNMIMDL message has been displayed and there are no other
immediate messages. If you do not create CNMDIMD, the NetView program
defaults it the same way it defaults CNMIMDL.

All these variables support attribute ($) variables.

For example, you might call VIEW with an error message in CNMIMDL and a
default message in CNMDIMD, with $CNMIMDL set to CR and $CNMDIMD set
to CG. The error message will be displayed in red, but if the user presses a
RETRIEVE key or delay-type key, for example, the red message is replaced by the
default message, in green.

The REXX command WINDOW is a good example of coding VIEW panels to set
PF keys. Enter BROWSE WINDOW to see the REXX source for this command.

Notes:

1. VIEW-input applications that do steps 1 and 2 always have their VIEWAID
variable set to ENTER after invoking VIEW, because other keys are converted
as if the user typed the command text and pressed ENTER.

58 Customization Guide

2. The &CNMIMDL variable is nulled out when control is returned to the
command list from VIEW, if VIEW detected that the immediate message area
was overwritten by the NetView program after the VIEW panel was output (for
example, by an immediate command entered by the operator).

3. The special variables CNMIMDL and CNMDIMD are supported in
VIEW-noinput as well as VIEW-input. CNMCMDL only has special meaning in
VIEW-input.

Dynamic Update Capabilities
Use the VIEW command to dynamically update the contents of the panel being
displayed. The updates can be controlled by:
v The calling procedure

When using EXTEND mode, if VIEW detects that a message TRAP is satisfied,
VIEW returns control to the calling procedure to allow the update of local
variable values displayed on the VIEW panel. VIEW refreshes the display with
the new values when control is returned to VIEW using the RESUME command.

v Any automation or procedure running on the same task

If the variables named on your VIEW panel are not defined by the calling
procedure, VIEW attempts to read values from task global variables. For more
information, refer to the online help for the GLOBALV command and the PIPE
VAR stage. Values of task global variables can be updated by any procedure
called on the same task (same operator ID) and VIEW immediately refreshes the
display when the procedure completes.

v Any procedure in the NetView program

If the variables named on your VIEW panel are not defined by the calling
procedure and do not exist as task global variables, VIEW attempts to read
values from common global variables. For more information, refer to the online
help for the GLOBALV command and the PIPE VAR stage. Any procedure in the
NetView program can update the values of common global variables; however,
VIEW refreshes the display only when an event (such as receipt of a message)
occurs at the task that started VIEW.

While a panel is displayed, automation from timers, messages, or alerts can drive
command procedures that update some of the variables substituted into the
displayed panel. Any processing under the OST where the panel is displayed
causes a dynamic update of the panel with new values for any variables that have
changed.

To make information on the panel easier to see, and make it easier to enter
information on the panel while a panel is dynamically updated, assign values to
attribute variables for all variables on the panel that can be changed dynamically.
This enables VIEW to send only the updated information to the screen without
rewriting the entire screen for each update.

When VIEW detects certain changes to common, task, and local variables or their
associated attribute variables, VIEW must rewrite the entire panel.

If the entire screen is redisplayed, changes typed by the operator on the screen
being redisplayed are lost. Following is a list of these changes:
v The attribute variable for a given data variable has changed to indicate that a

field has been changed from protected to unprotected or vice versa.
v An attribute variable for a given data variable now has a valid value. It either

did not exist or it had a value that is not valid.

Chapter 3. Using the VIEW Command 59

v An attribute variable for a given data variable now has no value or a value that
is not valid. It previously had a valid value.

v The value for a data variable has changed, and a valid attribute variable is not
associated with the data variable.

To continue processing of the VIEW command after variables used by the
displayed panel are updated, use the RESUME command.

Sample of Panel Updating
The following figures show the dynamic updates of the contents of a panel.

“Example of a REXX Command List to Update a Panel” is an example of a
command list called RESDYN which is shipped as part of sample CNMS1101.
RESDYN uses the RESOURCE command output as data to be displayed in a panel
using the VIEW command. The displayed data is updated on a time interval that
you specify when calling the command list. The default time interval is 10 seconds.
Note that this example of the VIEW issued for the RESDYN function (option 12)
uses the EXTEND parameter in order to make use of the NetView for z/OS
Version 5 Release 1 extended functionality.

Example of a REXX Command List to Update a Panel
/* -------------- Dynamic Resource Display (option 12) -------------- */
/* A demonstration of using VIEW and TRAP to dynamically update a */
/* full screen display. We use the SPILL option of pipe’s KEEP */
/* (new for V5) to create a message after the specified refresh */
/* interval. This message is TRAPped, causing VIEW to return */
/* control to this procedure WITHOUT removing the displayed panel. */
/* The ’RESUME’, below is a REINVOCATION of the original VIEW!!! */
/* */
/* Note that the first call to "fillVars" passes an extra little */
/* bit of pipe to the subroutine. The purpose is to get the first */
/* word of the second data line (STC name) for the panel. */
/* */
/* -- */
resdyn:

interval = 10 /* refresh at 10 second intervals */
privMsgID = ’CNMRESDYN’ /* special purpose "msgid" for trapping */
getSTC = ’% STC:|DROP 1|TAKE 1|EDIT W1|VAR JBN’
Call fillVars getSTC /* set local variables with data from RESOURCE */
’TRAP AND SUPPRESS MESSAGES’ privMsgID /* TRAP our special message */
’PIPE VAR privMsgID | KEEP RESDYN’ interval ’SPILL’ /* make msg later */
’VIEW RESDYN CNMSRESP EXTEND’
DO WHILE (rc = 2) /* RC indicates "message trapped"? */
’MSGREAD’ /* just getting msg off trap queue */
CALL fillVars
’PIPE VAR privMsgID | KEEP RESDYN’ interval ’SPILL’ /* make msg later */
’RESUME’ /* Invoke VIEW, previously suspended */
/* NOTE: RC, at this point, is RC from VIEW, which was resumed. */

END
’pipe hole | keep resdyn’ /* empty safe created above */

return
/* ----------- Obtain data for RESDYN display (option 12) ----------- */
/* Notice that the stem variable "out." is in our local variable */
/* dictionary. VIEW could always read these value; */
/* we will have an opportunity to update them while VIEW is active. */
/* --- */
fillVars:

ARG xtraStg /* use extra first time only */
’PIPE (NAME RESDYN END %)’,
’| NETVIEW RESOURCE’,

60 Customization Guide

’| SEPARATE DATA’, /* No use for DSI386I title line */
’| STC: FANOUT’, /* MAYBE need extra copies */
’| EDIT SKIPTO /=/ 2.* STRIPL 1 ’,
’| COLOR WHITE’,
’| $STEM OUT.’,
xtraStg
TM = date() time()
$TM = ’CB HR’

return

Figure 12 is an example of the output from the RESDYN command list.

Figure 13 is the source panel text that displays the previous panel (Figure 12).

VIEW manages the PF keys and the command line without the intervention of the
RESDYN command list.

CNMSRESP NetView Resource Utilization 5 Sep 2011 15:26:41

TOTAL CPU PERCENTAGE = 100.00
T510EENV CPU PERCENTAGE = 33.62
T510EENV CPU TIME USED = 41,175.45 SEC.
REAL STORAGE IN USE = 23360K
PRIVATE ALLOCATED < 16M = 752K
PRIVATE ALLOCATED > 16M = 23180K
PRIVATE REGION < 16M = 7144K
PRIVATE REGION > 16M = 65536K

TO SEE YOUR KEY SETTINGS, ENTER ’DISPFK’
CMD ==>

Figure 12. RESDYN Command List Output Example

*** AT2 XVAR SFD
+CNMSRESP NetView Resource Utilization + &TM
$
$
$ TOTAL CPU PERCENTAGE = &OUT.1
$ &JBN CPU PERCENTAGE = &OUT.2
$ &JBN CPU TIME USED = &OUT.3
$ REAL STORAGE IN USE = &OUT.4
$ PRIVATE ALLOCATED < 16M = &OUT.5
$ PRIVATE ALLOCATED > 16M = &OUT.6
$ PRIVATE REGION < 16M = &OUT.7
$ PRIVATE REGION > 16M = &OUT.8
$
$
$
$
$
$
$
$ $Display is updated approximately every 10 seconds.
&CNMIMDL
%CMD==>~&CUR

Figure 13. CNMSRESP Source Panel Text

Chapter 3. Using the VIEW Command 61

Changing Colors in Browse
The template shown in “BROWSE Command Panel Definition Showing Color
Attributes” is used when browsing members of a partitioned data set. Note the
various applications of the color attributes shown in Table 11 on page 39 and
Table 12 on page 39. The characters %, $, ¬, and + each assign a specific color to
the screen area immediately following their positions. To change a color area on
the screen, you need only change the color attribute. You can change only existing
attribute fields; changing any other field can result in errors when browsing.

BROWSE Command Panel Definition Showing Color Attributes
/**
/* BROWSE Command Panel for displaying member data *
/**
*** WIDE OPTROW=(
%NETVIEW.BRWS ------ BROWSE &BMEMBER (&BDDNAME) --- LINE &BTOP TO &BBOT OF &BTOT
¬&BMESSAGE %&BSCL &BSC +
&BCOL $
&BDATALINE
&BDATALINE
&BDATALINE
&BDATALINE
&BDATALINE
&BDATALINE
&BDATALINE
&BDATALINE
&BDATALINE
&BDATALINE
&BDATALINE
&BDATALINE
&BDATALINE
&BDATALINE
&BDATALINE
&BDATALINE
&BDATALINE
&BDATALINE
(&BDATALINE
(&BDATALINE
(&BDATALINE
(&BDATALINE
(&BDATALINE
(&BDATALINE
(&BDATALINE
(&BDATALINE
(&BDATALINE
(&BDATALINE
(&BDATALINE
(&BDATALINE
(&BDATALINE
(&BDATALINE
(&BDATALINE
(&BDATALINE
(&BDATALINE
(&BDATALINE
(&BDATALINE
(&BDATALINE

(&BDATALINE
(&BDATALINE
(&BDATALINE
(&BDATALINE
(&BDATALINE
(&BDATALINE
(&BDATALINE
(&BDATALINE

62 Customization Guide

(&BDATALINE
(&BDATALINE
(&BDATALINE
(&BDATALINE
(&BDATALINE
(&BDATALINE
(&BDATALINE
(&BDATALINE
(&BDATALINE
(&BDATALINE
(&BDATALINE
(&BDATALINE
%CMD==>~&BCOMMAND $
&CNMIMDL

Chapter 3. Using the VIEW Command 63

64 Customization Guide

Chapter 4. Modifying and Creating Online Help Information

The NetView program contains a help facility, which has two types of help
information.

The first type of help is view-based help, which is displayed by using the VIEW
command. The second type is window-based help, which is displayed by using the
WINDOW command.

This chapter explains how you can add, delete, or modify help information and is
arranged in the sequence you use to accomplish this. The sequence follows:
1. Locate the help source file.
2. Copy and change the source file.
3. Store the copy.
4. Display the help to test your changes.

Locating Help Source Files
Source files define the panel contents that are displayed.

Help information is contained in a separate file and is shipped as a member in a
partitioned data set (PDS). English help source files are stored in the
NETVIEW.V6R2M1.CNMPNL1 data set.

Notes:

1. Japanese help source files are stored in the NETVIEW.V6R2M1.SCNMPNL2
data set.

2. Copies of the command and message help are stored on the web server. If you
customize the command and message help in NetView data set members, you
may want to make the same changes to the web server files.

Verify that your organization has not changed the library name.

Before you create a new help source, try to locate an existing online help that is
similar to the one you want to create. Generally, when you have a help source file
displayed, the file name is in the upper left corner.

For command help information, you can locate the source file you want to change
by browsing the HELPMAP. Window-based help files are prefixed with the <
character. See “HELPMAP Facility” on page 70 for more information on the
HELPMAP. Help information for groups of messages is stored as members of the
PDS, one member for each group. The member name is determined by truncating
the message ID prior to the last numeric digit. For example, help for messages
DSI001I and DSI002I is stored in member DSI00. Help for message EKGV68001I is
stored in member EKGV6800.

If a message or command help panel is currently being displayed, you can use the
SHOWDATA command to locate the source file. Figure 14 on page 66 displays the
information returned after entering SHOWDATA on the command line.

Note: In Figure 14 on page 66, the following are true:

© Copyright IBM Corp. 1997, 2015 65

1. The panel is located in member EUYCLIST of the CNMPNL1 data set.
2. The !+! listed in the response from the SHOWDATA command is generated by

special processing from the help search procedure and can be ignored.

View-Based Help
The source file contents include the text of the displayed panel and the definition
statements associated with the panel. A definition statement includes:
v A prologue
v The help panel name
v The continuation panel name
v A list of associated help panels

To view the source file for a View-based help panel, enter:
BROWSE CNMPNL1.panelid

Where panelid is the name that is displayed in the upper-left corner of the source
for the help. For additional information, see “Creating Full-Screen Panels” on page
31.

Window-Based Help
Figure 15 on page 67 is an example of the source format of the Window-based help
information. Descriptions of each numbered field follow the figure.

CNMPNL1.EUYCLIST HELP PIPE STAGES LINE 1 OF 41

< Read from a PDS member <
$STEM Read and set stemmed variables and attributes. $1
$VAR Read and set variables and attributes $2
BETWEEN Divide message streams into sections B2
CASEI Compare character strings C3
CHANGE Replace string occurrences C12
CHOP Truncate lines after string C14
COLLECT Create multiline messages C31
CONSOLE Display messages in a pipeline C32
CORRCMD Process a command in a pipeline C33
CORRWAIT Allow asynchronous messages in a pipeline . . C34
CONSOLE Display messages in a pipeline C59
DROP Drop messages from a pipe D34
ENVDATA Output environment data E15
EXPOSE Exposes messages in a pipe E23
FANIN Read from multiple input streams F1
HELDMSG Place held messages in a pipeline H18
HOLE Discard messages or judge correlation H34
INTERPRT Build stages from data I10
JOINCONT Joins consecutive messages J1

CNMPNL1.EUYCLIST, for !+! PIPE,STAGES PIPE,COMMANDS STAGES
CMD==> showdata

Figure 14. Example of Using the SHOWDATA Command to Locate Help Source Files

66 Customization Guide

▌1▐ Prologue
An optional section for programmer comments.

▌2▐ Message or Command
The message or command to which the text applies. If the help information

*** EUYRET 5697-B82 (C) Copyright IBM Corp. 2011 ▌1▐
* All Rights Reserved.
* CHANGE ACTIVITY:
*
============== REPEAT RFIND ▌2▐
REPEAT (BROWSE) ▌3▐

:H2. Syntax ▌4▐

>>--REPEAT--><
:H2. IBM-Defined Synonyms

+-----------------------------------+----------------------------------+
| Command or Operand | Synonym |
+-----------------------------------+----------------------------------+
| REPEAT | R or RFIND |
+-----------------------------------+----------------------------------+

:H2. Purpose of Command

The REPEAT command reissues the last FIND command while you are browsing
the network log or a member of a partitioned data set. Since this
command is sensitive to the current position of the cursor, it is
normally entered using a PF key.

By repeatedly pressing the PF key set to REPEAT, you can find successive
occurrences of a specified character string. After the first occurrence
of a character string has been found, the REPEAT key will find the next
occurrence. After the last occurrence of a character string has been
found, the REPEAT key can be used to continue the search, wrapping
around from the bottom line to the top line (or from the top line to the
bottom line if the FIND command included the PREV parameter.)

============== RETURN RET
▌2▐
RETURN (BROWSE, HELP, HELPDESK, NCCF, NLDM, NPDA, STATMON, VIEW)

:H2. Syntax

>>--RETURN--><
:H2. IBM-Defined Synonyms

+-----------------------------------+----------------------------------+
| Command or Operand | Synonym |
+-----------------------------------+----------------------------------+
RETURN	RET (for BROWSE, HELP, HELPDESK,
	STATMON, and VIEW)
	R (for NLDM and NPDA)
+-----------------------------------+----------------------------------+

Note: The command facility has no synonym for RETURN.

:H2. Purpose of Command

The RETURN command returns you to the previous component or the last
selection panel that you used.

You should not issue this command from a command list.
:H2. Restrictions

...

Figure 15. Example of Source for Message and Command Help Information.

Example of Source for Message and Command Help Information

Chapter 4. Modifying and Creating Online Help Information 67

is for a command that can be used in more than one component, the
command name is prefixed with the component name. Command names
must be preceded by 14 equal (=) signs and a blank space.

▌3▐ Message or Command Help Title
The title of this help source file.

▌4▐ Tags
Information can be presented in different ways. These can include:
v :H2. is used to highlight command names.
v :XMP. and :EXMP. are used to surround examples.
v :IF DTYPE=PANEL followed by :ENDIF marks a section that is shown

when HELP presents a full-screen display.
v :IF DTYPE=MSGS followed by :ENDIF marks a section that is shown

when HELP presents a line mode display. This occurs when HELP is
called at an autotask or when full-screen displays are otherwise
unsupported.

v :LINK. is used to move from one topic to another. The :LINK. tag must
be in uppercase and begin in column one; it precedes the display line to
which it pertains. This line becomes a tab stop and is highlighted by
WINDOW. If more than one line of text is to be highlighted for linking,
the :LINK. tag must precede each line. See the example coding in
Figure 16 on page 69.
The operator makes a selection by placing the cursor on the line or by
issuing a FIND command that selects the line. Optionally, you can
designate a keyword that the operator can type to issue the command.
The keyword is enclosed in parentheses immediately following the
:LINK. tag.

v :CMD. is used to precede a command that can be executed immediately
when that line is selected. The command line can contain variable text
(for example, HELP msgno) that the operator can overlay with specific
data, then press the ENTER key to execute the command. The :CMD. tag
has an end tag, :ECMD., and must follow the line of command text. Both
:CMD., and its end tag must be in uppercase and begin in column 1.

A portion of EUYSLIST is shown in Figure 16 on page 69 to show how the
:IF DTYPE and :LINK. statements are coded.

68 Customization Guide

Copying and Changing Help Source Files
Before you create a new help source file, try to locate an existing online help file
that is similar to the one you want to create. See “Locating Help Source Files” on
page 65.

If you find a comparable panel, copy it using a screen editor. Change the panel by
typing over the existing text or by adding text. If you cannot find a similar online
help file, use a screen editor to build a new one.

If you want to modify or create a help source file while the NetView program is
running, define your panel data set without secondary extents. Otherwise, a panel
can be filed in a new extent, requiring that you close and restart the NetView
program to use the panel.

The conventions for structuring a new panel are the same as those for modifying
an existing panel. All help source files must have a fixed-length blocked record
format and a logical record length of 80 bytes (RECFM=FB, LRECL=80), unless you
are using a fully qualified data set name listed in the HELPMAP. See “HELPMAP
Facility” on page 70 for more information. Null characters are also counted within
this 80-byte record. In addition, you might need to change a command list or
another panel that is affected by your new panel.

You can customize the HELPDESK to include topics specific to your installation.
The NetView program provides a template file, CNMHDSKU, that can be edited to
create these topics.
1. Add the new topics to CNMHDSKU.
2. Add the new topic identifiers to the table of contents in file CNMHDSK0.

...
============== COLLECT
COLLECT (NLDM,PIPE)

COLLECT is associated with more than one NetView component.

:IF DTYPE=PANEL
Select To Get Information About
:LINK.(A)HELP NLDM COLLECT
A NLDM COLLECT Use Session Monitor to collect response time data

:LINK.(B)HELP PIPE COLLECT
B PIPE COLLECT A Pipe stage which collects messages in a pipe

:LINK.(C)HELP PIPE STEM
C If you use the COLLECT command following a STEM command, see the

:LINK.(C)HELP PIPE STEM
description of the COLLECT operand of the STEM command. Enter C.

:ENDIF
:IF DTYPE=MSGS
Enter HELP NLDM COLLECT for help on the Session Monitor COLLECT command
Enter HELP PIPE COLLECT for help on the COLLECT pipe stage

:ENDIF...

Figure 16. Example of Using :IF DTYPE= and :LINK..

Example of Using :IF DTYPE= and :LINK.

Chapter 4. Modifying and Creating Online Help Information 69

Note: If you want to customize any of the existing HELPDESK files
(CNMHDSK1–CNMHDSK9), put the information in a separate file and use the
%INCLUDE statement. Otherwise, that information will need to be added each
release.

After creating or modifying a help file, store it in a data set concatenated to
DDNAME CNMPNL1. As an alternative, you can also modify the panel with an
SMP USERMOD. See “Storing Help Source Files” for more information.

Storing Help Source Files
Ensure that your panel names do not use the same prefixes used by the panel
names that are supplied with the NetView program.

Store all help source files that you create or modify. Two methods for storing help
files follow:
v Concatenate the user partitioned data set that contains the modified help file to

the CNMPNL1 DD statement in the NetView startup procedure before the data
set NETVIEW.V6R2M1.CNMPNL1. If the Support Center modifies the panel,
those changes will not be added to your help file.

v Include your modified help file into a System Modification Program (SMP)
USERMOD and apply the USERMOD so that SMP stores the modified panel in
NETVIEW.V6R2M1.CNMPNL1. SMP automatically notifies you of any future
changes that the Support Center makes to the panel you modified. For more
information on how to use an SMP USERMOD, refer to the System Modification
Program library.

Note:

1. The default data set for the Japanese version of the product is
NETVIEW.V6R2M1.SCNMPNL2.

2. English help source files are stored in the NETVIEW.V6R2M1.CNMPNL1 data
set. Verify that your organization has not changed the library name.

HELPMAP Facility
The HELP command scans the HELPMAP for the required command help member
name using the arguments as search targets. HELP uses the arguments in the
following manner:
v With no arguments

When you enter HELP without supplying any arguments, you get
component-level HELP for the component you are in.
If the target arguments are not found in the table, HELP searches for a pair of
parentheses () and uses the associated panel name.

v With one argument
When one argument is supplied, HELP attempts to resolve the argument as a
command synonym, if possible.

v With two or three arguments
When two or three arguments are supplied, the search target is constructed by
concatenating the arguments with commas. For example:
ONE,TWO,THREE

70 Customization Guide

HELPMAPU is a specific HELPMAP for user-defined help files created for
commands. A %INCLUDE statement contained in HELPMAP embeds HELPMAPU
that provides the mapping for those help files created by the user.

Note: Do not map user-defined help files to HELPMAP. These changes interfere
when IBM applies maintenance to HELPMAP.

A portion of CNMHELPF is shown in Figure 17 to show how the help names are
listed. Those that are prefixed with the < character are window-based help files;
others are view-based help files.

You can add fully qualified data set names within single quotes to the HELPMAP.
See the following example as a guide:
< ’USER.CNMPNL1(MYCMDHLP)’ MYCOMAND

Displaying New Help Panels
After you have created a new help panel, use the HELP command to view the new
panel, and any associated commands or panels, to ensure that they display
properly.

* 5697-B82 (C) COPYRIGHT IBM CORPORATION 2014 *
* ALL RIGHTS RESERVED. *
* NAME(CNMHELPF) SAMPLE(CNMHELPF) RELATED-TO(HELPMAP) *
* DESCRIPTION: NETVIEW HELP MAPPINGS FOR *
* FULL BASE FUNCTION. *
* *

CNMKNEEW ()
<EUYACQ ACQ
<EUYACT ACT
<EUYACION ACTION NPDA,ACTION
.
.
.
<EUYMENU MENU NLDM,MENU NPDA,MENU
<EUYMEAGE MESSAGE
<EUYMONIT MONIT STATMON,MONIT
<EUYMOOFF MONOFF STATMON,MONOFF
<EUYMONON MONON STATMON,MONON
<EUYMRENT MRECENT MR NPDA,MRECENT NPDA,MR
<EUYMSG MSG
<EUYSLIST MVS
<EUYMVS NCCF,MVS COMMAND,MVS
<EUYSTART MVS,START
CNMKNCCF NCCF DSINCCF
.
.
.

Figure 17. Example of the HELPMAP.

Example of the HELPMAP

Chapter 4. Modifying and Creating Online Help Information 71

72 Customization Guide

Chapter 5. Customizing Session Monitor Sense Descriptions

The NetView program provides help for VTAM sense codes through the session
monitor SENSE command. You can request help for either 2-byte or 4-byte sense
codes. The information used to present explanations for the sense codes is stored
as a set of members in the DSIPARM data set. You can customize these members
or include additional members to include help for sense codes that have additional
meaning for a specific application.

Session Monitor Sense Codes
The session monitor sense code descriptions are stored as DSIPARM members
named CNMBnnn, where nnn is the first three hexadecimal digits of the 2-byte and
4-byte sense codes described in the member. For example, help for sense codes
08B2 and 08B60001 is stored in DSIPARM member CNMB08B. The CNMB08B
member shipped with the NetView product is shown in Figure 18 on page 74.

The general conventions are:
v The descriptions are first grouped by the leftmost two bytes of the sense code,

using a separator of $$$KEY xxxx???? where xxxx is the hexadecimal value of
the leftmost two bytes. The description of the 2-byte sense code xxxx (or 4-byte
sense code xxxx0000) follows this separator.

v Extended sense code descriptions, identified by the rightmost two bytes of a
4-byte sense code, are grouped using a separator of $nnnn where nnnn is the
hexadecimal value of the rightmost two bytes. The extended description follows
this separator.

v Text descriptions must be contained in columns 1–57 of the DSIPARM member.
This text is not DBCS-enabled.

Note: Any modifications you make to existing DSIPARM CNMBxxx members may
be replaced by maintenance or another release of the NetView product. You can
update the comments at the beginning of the DSIPARM CNMBxxx members to
document your changes, and store any members you create or modify in a data set
concatenated before the DSIPARM data set that is supplied with the NetView
program. This helps keep your modifications from being overlaid by subsequent
maintenance or product changes.

© Copyright IBM Corp. 1997, 2015 73

Examples
Following are some examples of adding and modifying sense code description
members in DSIPARM:
v To add additional help for sense code 08B2 or 08B20000, change the help that is

supplied with the NetView program in the following way:

* 5697-B82 (C) COPYRIGHT IBM CORP. 2011 *
* DESCRIPTION: SAMPLE -- SENSE CODES *
* CNMB08B CHANGED ACTIVITY: *
* CHANGE CODE DATE DESCRIPTION *
* ----------- -------- --*

$$$KEY 08B2????
Data transmission failure: the data transmission between
an application program in an SNA MS entry point and an
application program in a subentry point was incomplete,
causing abnormal termination of the function. Bytes 2
and 3 following the sense code contain sense code
specific information.
$0000
No specific code applies.
$0001
A time-out has occurred while waiting for transmission of
data between the two application programs. For example,
a service processor has timed out while waiting to
receive data from the main processor.
$0002
A time-out has occurred while waiting for transmission of
data between two applications.
$$$KEY 08B5????
Network Node Server Not Required: Sent by an APPN end
node control point to a network node control point (1) to
deactivate CP-CP sessions with the NNCP, or (2) to reject
a CP-CP session BIND from the NNCP. The end node no
longer requires network node services from the receiver.
Note: This sense data value is carried within the X’35’
control vector on an UNBIND(Type = X’01’) for case (1)
above, or on an UNBIND(Type = X’FE’) for case (2).
VTAM Hint: A possible cause of this error is that the
Network Node Server for the CP-CP session attempt is not
in the Network Node Server List.
$$$KEY 08B6????
CP-CP Sessions Not Supported: Sent by a network node
control point to reject a CP-CP session BIND from another
APPN control point; support for CP-CP sessions on that TG
was removed since the time when the TG was first
activated.
Note: This sense data value is carried within the X’35’
control vector on an UNBIND(Type = X’01’). Bytes 2 and
3 following the sense code contain sense-code-specific
information.
$0000
No specific code applies.
$0001
During link activation on a switched link, it
was discovered that the partner node does not
support CP-CP sessions on this TG.

Figure 18. CNMB08B Sense Code Help

74 Customization Guide

$$$KEY 08B2????
Data transmission failure: the data transmission between
an application program in an SNA MS entry point and an
application program in a subentry point was incomplete,
causing abnormal termination of the function. Bytes 2
and 3 following the sense code contain sense code
specific information.
The SNA MS entry points currently defined are SYSTEM1
and SYSTEM2.

Note the two lines of help information added for this installation-specific sense
code.

v To add help for a new sense code 08B3 or 08B30000, add the following
information immediately after the information that is supplied with the NetView
program for sense code 08B2. For example:
$$$KEY 08B3????
This sense code is generated by application XYZ when a
failure occurs between components of the application.

Note the two lines of help information added for this installation-specific sense
code.

v To add help for a new sense code 08B60002, add the following information
immediately after the information that is supplied with the NetView program
for sense code 08B60001. For example:
$0002
During link activation on a switched link, it
was discovered that the partner node does not
permit sessions with this partner.

Note the three lines of help information added for this installation-specific sense
code.

v To add help for a new sense code 08C1xxxx, create a new member in DSIPARM
named CNMB08C, and include the following statements:
$$$KEY 08C1????
This sense code is generated by application ABC when a
failure occurs in a component of the application.
The third and fourth bytes of the sense code identify
the failing component ID.

Note the four lines of help information added for this installation-specific sense
code.

Chapter 5. Customizing Session Monitor Sense Descriptions 75

76 Customization Guide

Chapter 6. Customizing Hardware Monitor Displayed Data

This chapter describes how to modify the presentation of generic and nongeneric
alerts. In prior releases of the NetView program, Recommended Action panels,
Event Detail panels, and alert messages were stored at the host. Each nongeneric
alert had a unique set of panels and messages. Many of these remain in the current
release of the NetView program. With generic alerts, generic alert code points are
used to dynamically build the hardware monitor panels.

This chapter describes how to do the following:
v Modify the text of nongeneric Recommended Action and Event Detail panels
v Modify nongeneric alert messages
v Overlay recommended action numbers from a generic alert
v Control the use of color and highlighting for hardware monitor panels
v Include user-defined errors, such as creating and modifying generic code points

or adding resource types to the hardware monitor

Note: Color maps for hardware monitor help panels and command description
panels are available only in prior releases of the NetView program.

If your panels or alert messages have been translated into a language that requires
double-byte characters, take care to preserve the integrity of the double-byte
character set (DBCS) strings.

Modifying Hardware Monitor Nongeneric Panels
Recommended Action panels and Event Detail panels are defined for event
conditions that are not based on generic alert records. If several event conditions
use the same Recommended Action panel or Event Detail panel, the panel is
physically defined under a single name, the actual panel name. Any other name
under which the actual panel can be displayed is the panel alias. Determining
whether the panel name is an actual name or an alias is the first step in modifying
panel text.

You can make changes to the panel text, and these changes are reflected in all its
aliases. You can also make changes to a panel alias, resulting in the creation of a
new panel under the former alias name.

Determining a Panel Name
To determine a panel name and whether it is a panel name or an alias, you must
know the event associated with the text you want to change and then identify a
resource for which the event is logged. Use the following steps as a guide to help
you determine the type of name:
1. To identify a resource, display the Alerts-Static, Alerts-History, or Most Recent

Events panel.
2. Enter sel# C, where sel# is the selection number on the panel of the event

associated with the text you want to change. Message BNJ962I displays a
5-digit code associated with the event. If message BNJ378I is displayed, the
event is generic and stored panels are not associated with the event.

© Copyright IBM Corp. 1997, 2015 77

If you receive a product ID and alert ID rather than a 5-digit code, the
associated record is a generic alert. Generic alerts do not have unique prestored
panels in the hardware monitor. See “Using NMVT Support for User-Written
Programming” on page 91 for more information on generic alerts.

3. Examine the 5-digit code, xxxyy, that the NetView program returns. The
variables are described as follows:

xxx Is the NetView-designated product code, or block ID, for the resource.

yy Is an individual panel identifier.
4. Determine which panel contains the text you want to change, as follows:
v For a Recommended Action panel, the panel name (or panel alias) is

BNIxxxyy, where xxx and yy are the codes you identified in step 3.
v For an Event Detail panel, the panel name (or panel alias) is BNKxxxyy,

where xxx and yy are the codes you identified in step 3.
v Determine whether BNIxxxyy or BNKxxxyy is an actual or alias panel name:

– Use an editor such as ISPF/PDF to examine the directory listing of panel
names. This listing is in the partitioned data set (PDS) named
NETVIEW.V6R2M1.BNJPNL1 that is provided with the NetView program.
The word alias is displayed next to the panel names that are aliases.

v See the appropriate section of this book for the action you want to perform:
“Changing Panel Text” on page 80, “Changing from Alias to Actual” on page
80, “Deleting an Actual or Alias” on page 80, or “Adding an Actual or Alias”
on page 80.

“Sample BNJBLKID Table” is an example of a BNJBLKID table.

Sample BNJBLKID Table
TITLE ’BNJBLKID: LIST OF ALIAS TABLES BY BLOCK ID’
BNJBLKID CSECT

EJECT
DS 0F

NUMENT DC AL4((TABEND-TABSTART)/LENG) NO. OF ENTRIES
TABSTART EQU *

DC CL3’FED’
DC CL3’FEE’
DC CL3’FEF’
DC CL3’FE1’
DC CL3’FE2’
DC CL3’FE3’
DC CL3’FE4’
DC CL3’FFD’
DC CL3’FFE’
DC CL3’FFF’
DC CL3’FF2’
DC CL3’FF5’
DC CL3’FF6’
DC CL3’FF7’
DC CL3’FF8’
DC CL3’FF9’
DC CL3’GA1’
DC CL3’GB1’
DC CL3’GC1’
DC CL3’003’
DC CL3’005’
DC CL3’017’
DC CL3’02D’
DC CL3’02F’
DC CL3’021’
DC CL3’022’

78 Customization Guide

DC CL3’023’
DC CL3’03E’
DC CL3’036’
DC CL3’037’
DC CL3’038’
DC CL3’04A’
DC CL3’04B’
DC CL3’04C’
DC CL3’04D’
DC CL3’04E’
DC CL3’04F’
DC CL3’043’
DC CL3’044’
DC CL3’047’
DC CL3’048’
DC CL3’049’
DC CL3’057’
DC CL3’47C’

TABEND EQU *
LENG EQU 3 ENTRY BYTE LENGTH

END BNJBLKID

“Sample BNJALxxx Table” is an example of a BNJALxxx table.

Sample BNJALxxx Table
TITLE ’BNJAL036: ALIAS TABLE FOR BLOCKID 036’

BNJAL036 CSECT
EJECT
DS 0F

NUMENT DC AL4((TABEND-TABSTART)/LENG) NO. OF PAIRS
* REAL NAME ALIAS NAME
TABSTART EQU *

DC CL8’BNI03609’,CL8’BNI0366D’
DC CL8’BNI03608’,CL8’BNI0366C’
DC CL8’BNI03607’,CL8’BNI0366B’
DC CL8’BNI03606’,CL8’BNI0366A’
DC CL8’BNI03605’,CL8’BNI03669’
DC CL8’BNI03605’,CL8’BNI03671’
DC CL8’BNI03605’,CL8’BNI0360D’
DC CL8’BNI03604’,CL8’BNI03668’
DC CL8’BNI03604’,CL8’BNI03670’
DC CL8’BNI03604’,CL8’BNI0360C’
DC CL8’BNI03603’,CL8’BNI03667’
DC CL8’BNI03602’,CL8’BNI03666’
DC CL8’BNI03601’,CL8’BNI03665’
DC CL8’BNI0360B’,CL8’BNI0366F’
DC CL8’BNI0360A’,CL8’BNI0366E’
DC CL8’BNK03609’,CL8’BNK0366D’
DC CL8’BNK03608’,CL8’BNK0366C’
DC CL8’BNK03607’,CL8’BNK0366B’
DC CL8’BNK03606’,CL8’BNK0366A’
DC CL8’BNK03605’,CL8’BNK03669’
DC CL8’BNK03604’,CL8’BNK03668’
DC CL8’BNK03603’,CL8’BNK03667’
DC CL8’BNK03602’,CL8’BNK03666’
DC CL8’BNK03601’,CL8’BNK03665’
DC CL8’BNK0360D’,CL8’BNK03671’
DC CL8’BNK0360C’,CL8’BNK03670’
DC CL8’BNK0360B’,CL8’BNK0366F’
DC CL8’BNK0360A’,CL8’BNK0366E’

TABEND EQU *
LENG EQU 16 ENTRY PAIR BYTE LENGTH

END BNJAL036

Chapter 6. Customizing Hardware Monitor Displayed Data 79

Changing Panel Text
If BNIxxxyy or BNKxxxyy is an actual panel name (not an alias), follow these steps
to change the panel wording. BNIxxxyy panels must contain exactly 14
noncomment lines; BNKxxxyy panels must contain exactly seven noncomment
lines. Comment lines contain an asterisk (*) in column 1.
1. Use an editor, such as ISPF/PDF, to edit the PDS member containing the panel.

The PDS name is NETVIEW.V6R2M1.BNJPNL1 (unless it is changed during
installation), and the member name is the same as the panel name.

2. Save the changed member.

The changes apply to all event conditions that use the panel or any of its aliases.

Changing from Alias to Actual
If you want to make a panel that now appears under an alias into an actual panel,
follow these steps:
1. Use an editor, such as ISPF/PDF, to edit the PDS member containing the panel

alias. The PDS name is NETVIEW.V6R2M1.BNJPNL1 (unless it is changed
during installation), and the alias member name is the same as the panel name.

2. Save the changed member. TSO converts the panel alias into an actual panel.

A new actual panel is created under the name that was formerly the alias.

Reference: For more information about z/OS utilities and JCL, refer to the z/OS
library.

Deleting an Actual or Alias
To delete an actual or alias panel name, do one of the following:
v Delete the PDS member containing the actual or alias panel name. The PDS

name is NETVIEW.V6R2M1.BNJPNL1 (unless it is changed during installation),
and the member name is the same as the panel name.

v Use the utility IEHPROGM. For example, to delete aliases BNK04B2E and
BNK04B2F using this utility, you could code the following:
//DELMEBR2 JOB MSGLEVEL=(1,1)
//STEP1 EXEC PGM=IEHPROGM
//SYSPRINT DD SYSOUT=A
//DS1 DD VOL=SER=vsnum,DISP=SHR,UNIT=device_type
//SYSIN DD *
SCRATCH VOL=device_type=vsnum,DSNAME=panel_dsname,

MEMBER=BNK04B2E
//STEP2 EXEC PGM=IEHPROGM
//SYSPRINT DD SYSOUT=A
//DS1 DD VOL=SER=vsnum,DISP=SHR,UNIT=device_type
//SYSIN DD *
SCRATCH VOL=device_type=vsnum,DSNAME=panel_dsname,

MEMBER=BNK04B2F
/*

In this example, device_type is the device type, vsnum is the volume serial
number on which the data set resides, and panel_dsname is the name of the data
set containing the panels.

Reference: For more information on z/OS utilities and JCL, refer to the z/OS
library.

Adding an Actual or Alias
If you want BNIxxxyy or BNKxxxyy to be a new (or replacement) panel name or
alias, follow these steps:

80 Customization Guide

v Enter a new panel using an editor, such as ISPF/PDF, and copy an existing
panel that is similar to the desired panel. Then, change the copied panel.

v Add the new panel name or an alias, using the utility IEBUPDTE.

For example, to add BNK04B2E as an alias of BNK04B2A using IEBUPDTE, code
the following:
//PANELS JOB MSGLEVEL=1,MSGCLASS=A
//UPDATE1 EXEC PGM=IEBUPDTE,PARM=NEW
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD DSN=panel_dsname,DISP=SHR,UNIT=device_type,
// VOL=SER=vsnum
//SYSIN DD *
./ ADD NAME=BNK04B2A
DETAIL DESCRIPTION: THE ERROR ANALYSIS MICROCODE
HAS DETECTED AN INVALID ERROR LOG ENTRY.

LOG ENTRY 0-3 4-7 8-11
**

.

.

.
*
*
*
***************LAST LINE OF PDS MEMBER************
./ ALIAS NAME=BNK04B2E
/*

In this sample, panel_dsname is the name of the data set where the panel is stored,
and vsnum is the volume serial number on which the data set resides. Although
the sample defines only one new alias, up to 15 aliases are valid.

Reference: For more information on z/OS utilities and JCL, refer to the z/OS
library.

Nongeneric Alert Messages
To change the Event Description: Probable Cause text of any selection on an
Alerts-Static, Alerts-History, Alerts-Dynamic, Event Detail, or Most Recent Events
panel that is not associated with generic alerts, follow these steps:
1. Determine the event of the associated text and identify a resource against

which the event is logged.
2. For the resource identified in Step 1, display the Alerts-Static, Alerts-History,

Alerts-Dynamic, Event Detail, or Most Recent Events panel.
3. Enter sel# C, where sel# is the selection number of the event associated with

the text you want to change. Message BNJ962I displays a 5-digit code
associated with the event. If message BNJ378I is displayed, the event is generic.
If you receive a product ID and an alert ID rather than a 5-digit code, the
associated record is a generic alert. Generic alerts do not have unique prestored
Event Description: Probable Cause text messages in the hardware monitor. See
“Using NMVT Support for User-Written Programming” on page 91 for more
information on generic alerts.

4. Examine the following 5-digit code, xxxyy, that the NetView program returns.

xxx Is the NetView-designated product code, or block ID, for the resource

Chapter 6. Customizing Hardware Monitor Displayed Data 81

yy Is an individual hexadecimal panel identifier
5. Use an editor such as ISPF/PDF to retrieve and edit the CSECT that contains

the text you want to change. The name of the CSECT is BNJVMxxx (PDS
member in NETVIEW.V6R2M1.BNJSRC1), where xxx is the block ID you
identified in Step 4.

6. Locate the message text within BNJVMxxx. The message number for this text is
the decimal equivalent of yy, where yy is the hexadecimal identifier you
determined in Step 4.

7. Change the assembler language macro DSIMDS.

Reference: For the syntax of DSIMDS, refer to IBM Tivoli NetView for z/OS
Programming: Assembler for the text you want to change.

8. Save the changed CSECT.
9. Reassemble the CSECT, and link edit the CSECT into the load module of the

same name.

Using the ACTION Command List
You can use the ACTION command list to get more information on a
recommended action that is displayed in the hardware monitor. See Chapter 4,
“Modifying and Creating Online Help Information,” on page 65 for information on
how to modify the Action Help panels displayed by the ACTION command list.
Dnnn, Ennn, and Innn are recommended action numbers found on the
Recommended Action panels. Rnnn numbers are actions found on the resolution
action panel. The following describes what the ACTION command list displays for
recommended action numbers:

ACTION Dnnn
Displays a detailed description that is provided with the NetView program
of a recommended action.

ACTION Ennn
Displays a description of a recommended action, created by your system
programmer, for a user-defined generic alert action.

ACTION Innn
Displays a description of a recommended action created for a generic alert
action that is provided with the NetView program.

ACTION Rnnn
Displays a description of an actual action created for a resolution action
that is provided with the NetView program.

Overlaying Recommended Action Numbers
Because details of a particular generic alert Recommended Action can vary
depending on the sending product, Action Help panels cannot be provided for all
possible generic actions. Therefore, on NetView Action Help panels built for
generic alerts, each recommended action is preceded by an I-number (action that is
supplied with the NetView program) or an E-number (user-supplied action).

On Recommended Action panels of the hardware monitor, each recommended
action is identified with a special action number. Figure 19 on page 83 shows a
sample Recommended Action panel with three recommended actions (D225, D001,
and D238).

82 Customization Guide

I-number and E-number actions do not have associated panels that are supplied
with the NetView program. However, the NetView program allows users to
overlay I-numbers and E-numbers with action numbers, to create panels that are
specific to the sending product.

You can do this by modifying either table BNJDNUMB, which correlates a Product
Set ID with action numbers, or table BNJDNAME, which correlates a Product
Common Name with action numbers. BNJDNUMB is searched before BNJDNAME.

Modify table BNJDNUMB or BNJDNAME in NETVIEW.V6R2M1.BNJPNL2 and
create BNJwwwww PDS members.

Modifying BNJDNUMB, BNJDNAME, and BNJwwwww
This section uses the names BNJDNUMB and BNJwwwww to indicate a PDS
member.

BNJDNUMB
BNJDNUMB correlates a product-set identification (PSID) with a unique file or
PDS member (BNJwwwww) that contains the action numbers to use for this
product. To modify BNJDNUMB, use an editor such as ISPF/PDF.

Note: If the NetView program receives a generic alert whose PSID does not exist
in BNJDNUMB and whose product common name does not exist in BNJDNAME,
the default I-number or E-number is not modified.

The format for BNJDNUMB follows:
xxx
yyyyyyyyy BNJwwwww comment

. . .

. . .

. . .

Where:

N E T V I E W SESSION DOMAIN: CNM01 OPER1 05/17/10 14:40:53
NPDA-45A * RECOMMENDED ACTION FOR SELECTED EVENT * PAGE 1 OF 2
CNM01 CENTRAL LN08PTP PU32768

+--------+ +--------+
DOMAIN | COMC |----LINE----| CTRL |

+--------+ +--------+

USER CAUSED - LSL 2 REMOTE DSU/CSU IN TEST MODE
LSL 2 REMOTE DSU/CSU IN CONFIGURATION MODE
LINE SWITCHED TO INCORRECT POSITION

ACTIONS - D001 - CORRECT THEN RETRY

INSTALL CAUSED - LSL 2 REMOTE DSU/CSU ADDRESS INCORRECT
LSL 2 DSU/CSU’S SPEED MISMATCH
PHYSICAL LINE CONNECTIONS

ACTIONS - D225 - CORRECT ADDRESS FROM DSU/CSU CONTROL PANEL
D001 - CORRECT THEN RETRY
D238 - PERFORM REMOTE DSU/CSU PROBLEM DETERMINATION

ENTER ST (MOST RECENT STATISTICS), DM (DETAIL MENU), OR D (EVENT DETAIL)

???
CMD==>

Figure 19. Recommended Action Panel for Selected Event.

Recommended Action Panel for Selected Event

Chapter 6. Customizing Hardware Monitor Displayed Data 83

xxx Specifies the number of entries in BNJDNUMB. This number must begin in
column 1 and should be three characters long with leading zeros, if
necessary.

yyyyyyyyy
Specifies up to nine characters representing the PSID. This entry must
begin in column 1.

BNJwwwww
Is the name of the PDS member beginning in column 11, that contains
generic alert recommended action code points and associated action
numbers. Names such as BNJDNUM2, BNJDNUM3, for example, are
recommended. However, you can use any unique name. The name
BNJDNUM1 is already used for generic alerts produced by the hardware
monitor.

Entries in BNJDNUMB must be in ascending order. Comment lines contain an
asterisk (*) in column 1.

Determining the PSID: Because the sending product can be either a hardware
product or a software product, the PSID is defined as follows:
v For hardware products, the PSID is defined with the four numeric characters

identifying the machine type found in the X'00' subfield, Hardware Product
Identifier (located in the first X'11' subvector of the first X'10' subvector in the
generic alert).

v For software products, the PSID is defined with the nine uppercase
alphanumeric characters of the serviceable component identifier in the X'02'
subfield, software product serviceable component identifier (located in the first
X'11' subvector of the first X'10' subvector in the generic alert).

Note: If the X'02' subvector does not exist, use the seven uppercase
alphanumeric characters of the licensed program number in the X'08' subvector,
software product program number (located in the first X'11' subvector of the first
X'10' subvector in the generic alert).

Two methods are available to determine the PSID of a generic alert that is logged
to the hardware monitor database:
v Select sel# C from Alerts-Static, Alerts-History, or Most Recent Events panels to

display a message containing the PSID.
v Make a selection from the Event Detail menu to display page 1 of the PSID

panel. This panel displays the sending PSID.

BNJDNAME
BNJDNAME correlates a product common name with a unique file or PDS
(BNJwwwww) that contains the action numbers to use for this product. To modify
BNJDNAME, use an editor such as ISPF/PDF.

The format for BNJDNAME follows:
xxx
yyyyyyyyyyyyyyyyyyyyyyyyyyyyyy BNJwwwww comment

Where:

xxx Specifies the number of entries in BNJDNAME. This number must begin in
column 1 and must be three characters long with leading zeros, if
necessary.

84 Customization Guide

yyy...y Specifies up to 30 characters representing the software product common
name or up to 15 characters specifying the hardware common name.

BNJwwwww
Is the name of the PDS member beginning in column 32, that contains
generic alert recommended action code points and associated action
numbers. Names such as BNJDNUM2, BNJDNUM3, and so forth, are
recommended. However, you can use any unique name. The name
BNJDNUM1 is already used for generic alerts produced by the hardware
monitor.

comment
Comments must start in column 45.

The NetView program provides the following data in this PDS member:

Sample BNJDNAME Table
001
NETVIEW BNJDNUM1 NETVIEW PRODUCT

Determining the Product Common Name: Because the sending product can be
either hardware or software, the product common name is defined as follows:
v For hardware products, the hardware common name is defined by the EBCDIC

characters found in the X'0E' subfield, Hardware Product Common Name
(located in the first X'11' subvector of the first X'10' subvector in the generic
alert).

v For software products, the software common name is defined by the EBCDIC
characters found in the X'06' subfield, Software Product Common Name (located
in the first X'11' subvector of the first X'10' subvector in the generic alert).

To determine the product common name of a generic alert that is logged to the
hardware monitor database, make selection 2 from the Event Detail menu. This
selection will display the common name (hardware or software) of the sending
product.

BNJwwwww
Each BNJwwwww member contains generic alert recommended action code points
and associated action numbers. To create the BNJwwwww files or members
specified in table BNJDNUMB, use an editor such as ISPF/PDF. Each BNJwwwww
PDS member should be stored in the first data set in the concatenation string for
the DD statement BNJPNL2. This DD statement is in the NetView startup
procedure.

Avoid defining your panel data set with secondary extents when modifying or
creating a panel while the NetView program is running. If a secondary extent is
defined while the NetView program is running, a secondary extent failure can
occur causing error recovery and loss of a single instance of a request. If a second
attempt is made to execute the request, error recovery might succeed in the
execution of the request. However, recycling the NetView program would be
required for a full data set.

The format for BNJwwwww follows:
xxxx yyyyyyyy dnum
. . .
. . .
. . .

Chapter 6. Customizing Hardware Monitor Displayed Data 85

Where:

xxxx Is the 4-character generic alert recommended action code point (EBCDIC
version of the recommended action code point as defined by the generic
alert architecture). This field must begin in column 1.

yyyyyyyy
Is the 8-character alert ID number (EBCDIC version of the alert ID number
as defined in the X'92' subvector architecture). This field is optional. If
present, it must begin in column 11.

dnum Is the 4-character unique action number. This field begins in column 21.
Action numbers can be any combination of four EBCDIC characters. The
limiting factor of the action number is the ability of the ACTION command
list to use these four characters and display the associated panel.

Entries in each BNJwwwww file or member must be in ascending hexadecimal
order. If a non-hexadecimal number is used, it is skipped.

The BNJwwwww file or member specified in BNJDNUMB or BNJDNAME is
searched serially until a match is found or the end of the file is reached. After the
first * is found in column 1, the serial searching stops.

You can place blanks in the alert ID field, along with specific alert IDs, for a
particular action code point.

Figure 20 shows a sample BNJwwwww user-defined table.

For alert D2556B79, the code point 1002 uses D777 as its action number. For alert
93987791, code point 1002 uses D890 as its action number. For all other alerts from
this sending product, code point 1002 uses D562 as its action number.

Changing Color and Highlighting for Hardware Monitor Panels
For the hardware monitor displays, you can alter the color, highlighting, and
intensity of the display's text. You can also enable the display to produce an
audible alarm. Consider the needs of the display users before you modify these
four attributes as assigned by the NetView program.

Note: Changing the length of any attribute, row placement, or column placement
yields unpredictable results.

For any string of display text that is preceded by a blank, you can modify up to
four attributes as follows:

Color Text is red, yellow, blue, white, green, turquoise, or pink.

Highlighting
Text is underscored, blinking, or in reverse video.

Intensity
Text is more intense (monochrome terminals only).

Alarm Text causes an audible alarm at the user's terminal.

1002 D562
1002 93987791 D890
1002 D2556B79 D777

Figure 20. Sample BNJwwwww User-Defined Table

86 Customization Guide

You can change these attributes for specific displays or for all displays. For
example, you can select a single color for prompt lines on all displays.

The procedure for modifying these attributes begins with a color map. A color map
is a table that embeds characters, representing the various attributes, in a color
buffer. These characters in the color buffer control the appearance of the text.

The automation table can also be used to set or change the color and highlighting
of specific alerts for hardware monitor display.

Reference: For more information, refer to theIBM Tivoli NetView for z/OS
Automation Guide.

Selecting the Color Map
The first step in modifying a hardware monitor display is to determine which color
map controls the display you want to change. Appendix A, “Color Maps for
Hardware Monitor Panels,” on page 177, contains a matrix of the panel name,
panel number, and color map for hardware monitor panels.

After you identify the color map you need, edit the map using an editor such as
ISPF/PDF. The color maps are contained in the PDS named
NETVIEW.V6R2M1.BNJPNL2 (unless the name is changed during installation). The
member name is the color map name.

Note: If you want a particular attribute to apply to the same portion of each panel,
modify the color map BNJOVERW, which overwrites all other panel-specific color
maps. Be sure to test the results of BNJOVERW on each panel before putting it into
your production system. This map can produce unexpected results.

Modifying the Color Map
After you select the color map, you can modify it. A color map consists of a series
of lines of data, called map elements. The first line of a color map is always the
number of subsequent map elements. Map elements begin in column 1, and are
paired with comments that begin in column 41.

Each map element specifies, for a particular display row, the attribute, the
attribute's placement in the row, and the length in characters. Each item in the map
is followed by a comma, except for the last one, which is followed by a period.

Note: Changing any attribute's length, row placement, or column placement can
yield unpredictable results.

“Sample Color Map” shows a sample color map.

Sample Color Map
13,▌1▐ NUMBER OF ELEMENTS IN TABLE
1,1,1,79,BLU,▌2▐ NETVIEW HEADER
1,2,1,14,BLU, SCRN ID
2,2,16,64,HIG,WHI, SCRN TITLE
1,3,1,7,BLU, DOMAIN
1,3,9,71,TUR,
1,5,1,79,BLU, HEADING
99,SIZE-0-7,2,▌3▐ REPETITION
2,6,1,4,HIG,WHI, SEL #
1,6,6,74,TUR, DATA

Chapter 6. Customizing Hardware Monitor Displayed Data 87

1,SIZE-4,1,50,BLU,▌4▐ PROMPT LINE
2,SIZE-4,52,1,HIG,WHI, PROMPT LINE
1,SIZE-4,54,26,BLU, PROMPT LINE
1,SIZE-3,1,79,BLU. PROMPT LINE

▌1▐ The first item in the color map represents the number of subsequent lines of
data, or map elements. A map can have any number of map elements. The sample
map has 13 map elements.

▌2▐, ▌3▐, and ▌4▐ describe the three types of map elements as follows:

▌2▐ This type of map element contains attribute information in the following
format:
v The first item is the number of attributes in the map element. This can be a

value from 1 to 4.. A map element might have only one set of attributes, for
example, pink color, or any combination of attributes, such as pink color and
underscoring. The sample map element has one attribute, the color blue (BLU).

v The second item is the number of the display row that reflects the attribute. In
the sample, the attribute is to appear in row 1.

v The third item is the number of the display column that contains the attribute
character. In the sample, the attribute character is to be placed in column 1.
Consequently, the displayed text will begin in column 2.

Note: Be sure that the display text you want to modify is preceded by a blank
space. Otherwise, the character representing the attribute in the color buffer
overwrites some of the display text, and some characters are replaced with
blanks. For example, in the following string you cannot make the colon a
different color from the text:
EVENT DESCRIPTION:PROBABLE CAUSE

v The fourth item is the maximum character length of the attribute. In the sample,
the specified attribute covers 79 characters on the display, or columns 2–80.

v The last item is the attribute or sequence of several attributes. In the sample, the
color blue is the specified attribute. You can specify up to four attributes, but
only one from each category. If you want multiple attributes to apply to the
same character or string, you must specify the attributes for each category in this
order:
1. Alarm: ALM produces an audible alarm.
2. Intensity:

– HIG intensifies the color.
– NOH returns the color to normal intensity.

3. Highlighting:
– UND underlines the character or string.
– BLI causes the character or string to blink.

4. Color:
– RED produces red.
– YEL produces yellow.
– BLU produces blue.
– WHI produces white.
– GRE produces green.
– TUR produces turquoise.
– PIN produces pink.

88 Customization Guide

This map element makes the text in row 1, columns 2–80, blue. As the map
element's corresponding comment confirms, this blue string of text is the display
header.

▌3▐ This type of map element uses the repetition factor option to copy the attribute
or attributes specified for a particular row onto subsequent rows. A repetition map
element uses the following format:
v The number 99 signals the repetition of an element.
v In SIZE-x-y:

– SIZE represents the total number of rows in the panel. Use the word SIZE as
shown; do not replace it with a number.

– x is the number of unused or blank lines between the end of the panel data
and the prompt line. In the sample, no blank or unused lines occur between
the end of the panel data and the prompt line.

– y is the number of the starting row that is to copy, or repeat, the attribute or
attributes from the preceding row. In the sample, attributes from row 6 are to
be repeated on the subsequent rows, starting with row 7.

v The last item (2) is the number of attributes on row 6 that are repeated. In the
sample, the two attributes specified in the map for row 6 are to be repeated.

This map element copies the two attributes specified for row 6 onto subsequent
rows starting at row 7, and continues to the prompt line.

▌4▐ This type of map element uses the variable row placement option to specify
the row that contains the attribute. This option uses the following format:
v The first item (1) is the number of attributes in the map element. This number

can be 1–4. In the sample, the map element has one attribute, the color blue
(BLU).

v The second item (SIZE-x) indicates the display row that reflects the attribute,
where:
– SIZE represents the total number of rows in the display. Use the word SIZE as

shown; do not replace it with a number.
– x is the number of lines preceding the command line. For example, for the

Alerts-Static display:
- SIZE-4 is the first prompt line.
- SIZE-3 is the second prompt line.
- SIZE-2 is the message line.
- SIZE-1 is the NetView status line.
- SIZE-0 is the command line.

In the sample, the attribute is to appear on the first prompt line.

Note: Be sure that the command line is defined on byte 80 of the NetView
status line. Otherwise, some bytes can be overwritten.

v The third item (1) is the number of the display column that contains the
attribute character. In the sample, the attribute character is placed in column 1.
Consequently, the displayed text begins in column 2.

Note: Be sure that the display text you want to modify is preceded by a blank
space. Otherwise, the character representing the attribute in the color buffer
overwrites some of the display text, and some characters are replaced with
blanks.

Chapter 6. Customizing Hardware Monitor Displayed Data 89

v The fourth item (50) is the maximum character length of the attribute. In the
sample, the specified attribute covers 50 characters on the display.

v The last item (BLU) is the attribute or sequence of several attributes. You can
specify up to four attributes, but only one from each category. If you want
multiple attributes to apply to the same character or string, you must specify the
attributes in the order shown in “Sample Color Map” on page 87. In the sample,
the color blue is the specified attribute.

This sample map element makes the text in the first prompt line, columns 2–51,
blue.

Prompt Highlight Tokens
The prompt highlight token table BNJPROMP is located in the PDS named
NETVIEW.V6R2M1.BNJPNL2. You can modify this table. The maximum size of the
table is 25 prompts, with the prompt being a 15-byte character field. If you decide
to modify the table, use the Comment column for notes about the table. For
performance reasons, this table is not processed when building the Alert Dynamic
panel. Color is a 3-byte character field beginning at column 20. You can select only
those colors that are valid in the color maps. Table 15 is a sample of the format for
the prompt highlight token table.

Table 15. Prompt Highlight Tokens

Prompt Token Color Comment

SEL# WHI PROMPT SEL#

LDM WHI PROMPT LDM

LSL1 WHI PROMPT LSL1

LSL2 WHI PROMPT LSL2

RESNAME WHI PROMPT RESNAME

RESNAME1 WHI PROMPT RESNAME1

RESNAME2 WHI PROMPT RESNAME2

'A' WHI PROMPT A

'B' WHI PROMPT B

'P' WHI PROMPT P

'EV' WHI PROMPT EV

'ST' WHI PROMPT ST

'DM' WHI PROMPT DM

'M' WHI PROMPT M

'DEL' WHI PROMPT DEL

'S' WHI PROMPT S

'D' WHI PROMPT D

'R' WHI PROMPT R

The table is read into storage at initialization. You can redefine the prompt
highlight tokens or add new ones, up to a maximum of 25. You receive a message
if the table is not successfully read at initialization.

90 Customization Guide

Using NMVT Support for User-Written Programming
Network management vector transport (NMVT) support enables user-written
programs to report errors to the hardware monitor through generic alerts. Prior to
generic alerts, Recommended Action panels, Event Detail panels, and alert
messages were stored at the host in the NetView program. Each nongeneric alert
had a unique set of panels and messages.

Note: The original NMVT encoding contains many SNA major vectors including
Alerts. Subsequent encoding such as MDS_MU and CP_MSU contains many of the
same major vectors and are covered under the term NMVT in this section.

Coded generic alerts are contained in the NMVT. Generic alert code points are
used to dynamically build the hardware monitor panels. Nongeneric alerts are
used mainly for migration purposes. You should create new user-defined alerts
using generic alerts.

Reference: For more information on major vectors and subvectors of an NMVT,
refer to the SNA library.

This section contains a sample generic alert and the associated panels that are built
by the hardware monitor. (See Figure 21 on page 94 through Figure 25 on page 98.)
This section also describes how each panel is built.

User-Defined Alerts (Nongeneric)
Sixteen block IDs (X'F00'–X'F0F'), which are part of NMVT major vector X'0000', are
reserved for generating user-defined alerts.

The hardware monitor reserves USER0��–USERF�� (where �� are required blank
space X'40' characters to pad the name to 7 characters) for use as the
corresponding 7-character software identifier in the software product program
number (X'08') subfield of the first product identifier (X'11') subvector of the
NMVT. These are mapped to the block IDs from X'F00' to X'F0F'.

The hardware monitor allows a 1-byte alert description code within the basic alert
(X'91') subvector of the NMVT. This code lets you further qualify the alert. Put
your alert description code in the second byte of the 2-byte Alert Description Code
field. The hardware monitor ignores the first byte of that field.

NMVT-to-Panel ID Mapping
Using the block ID derived from the software product program number and the
alert description code, the hardware monitor maps the NMVT to the following:
v 14-line panel

A 14-line panel appears on the Recommended Action panel of the hardware
monitor for the NMVT. The PDS member name for this 14-line panel is in the
range between BNIF00xx and BNIF0Fxx, where the range of block IDs is from
X'F00' to X'F0F', and xx is the hexadecimal value of the alert description code.
The lines can be up to 80 characters long.

v 7-line panel
A 7-line panel appears on the hardware monitor's event detail panel for the
NMVT. The 7-line panel's PDS member name is in the range between BNKF00xx
and BNKF0Fxx, where the range of block IDs is from X'F00' to X'F0F', and xx is
the hexadecimal value of the alert description code.

Chapter 6. Customizing Hardware Monitor Displayed Data 91

The first eight translated characters of each of the first three X'A0' or X'A1'
qualifier subvectors are displayed on an eighth line, immediately following the
Event Detail panel. Write the Event Detail messages, with titles on the seventh
line, to describe the qualifiers.

v 48-byte alert description
A 48-byte alert description appears on the Alerts-Dynamic, Alerts-Static,
Alerts-History, Event Detail, and Most Recent Events panels. The 48-byte text
descriptions for a block ID are in a NetView message CSECT whose link-edit
load module name is in the range between BNJVMF00 and BNJVMF0F.

Panel Formats
For each new Recommended Action panel or Event Detail panel, use the same
format as in the existing panels to add a panel to the NetView panel library or a
concatenated user library.

For each new 48-byte alert description CSECT, use the same format as an existing
BNJVMxxx CSECT. BNJVMxxx CSECTs are coded using the macro DSIMDS. No
variable substitution is permitted for 48-byte alert descriptions.

User-Defined Alerts (Generic)
Generic alerts allow coded alert data to be transported within the alert, eliminating
the need for stored panels. The coded data can be one of the following:
v An index into predefined tables, containing short units of text that are used to

build a panel
v Textual data that appears directly on the panel

Coded data is maintained in code point tables which can be customized (For more
information on customizing code point tables, see “Modifying Generic Code Point
Tables” on page 100). The text strings indexed by the code points, and the display
of textual data that was sent in the alert, are in the same format no matter which
product sent the alert. Also, the same terminology is used to define similar
problems within different products because each product uses terminology defined
by Tivoli.

Generic alerts produce the same Alerts, Recommended Action, and Detail panels as
the hardware monitor's nongeneric alert support, but the panels are built
dynamically rather than using stored panels. Code points index into the tables
defined by Tivoli and the user.

The alert description and probable cause code points are used to build the
hardware monitor Alerts-Dynamic, Alerts-Static, Alerts-History, Event Detail, and
Most Recent Events panels. The user cause, install cause, failure cause, and
recommended action code points are used to build the hardware monitor
Recommended Action panel. The detail data code points are used to identify the
qualifiers that can appear on the hardware monitor Recommended Action or Event
Detail panel. Products use the same set of architected product-independent
terminology to define their Alert, Recommended Action, and Detail panels. Text
data transported in the NMVT is displayed on the Event Detail panel.

The NetView program ships generic code point tables that can be customized (for
more information on customizing code point tables, see “Modifying Generic Code
Point Tables” on page 100.). The generic code point tables shipped by the NetView
product are:
v BNJ92TBL—Alert description code points

92 Customization Guide

v BNJ93TBL—Probable cause code points
v BNJ94TBL—User cause code points
v BNJ95TBL—Install cause code points
v BNJ96TBL—Failure cause code points
v BNJ81TBL—Recommended action code points
v BNJ82TBL—Detail data code points
v BNJ85TBL—Detailed data code points, subfield X'85'
v BNJ86TBL—Actual action code points.

Using the GENALERT Command
You can use the GENALERT command to create your own alerts. The GENALERT
command is described in the NetView online help. For more information about the
code points and code point formats that can be used by the GENALERT command,
see the generic alert code points appendix in the IBM Tivoli NetView for z/OS
Messages and Codes Volume 2 (DUI-IHS).

Building Generic Alert Panels
Figure 21 on page 94 is an example of a generic alert NMVT. Unique panels are
built using the information contained in a generic alert record.

Reference: For more information on NMVTs, refer to the SNA library.

Chapter 6. Customizing Hardware Monitor Displayed Data 93

Figure 22 on page 95 through Figure 24 on page 98 describe how each unique
panel is built using the information contained in a generic alert NMVT. Figure 22
on page 95 shows a sample Alerts-Dynamic panel. Explanations of the numerical
references follow the panel.

X'161101'

X'130012'

X'F9F9F9F9F1F1C1F0F5'

X'F0C1F0C1F0C1F0'

X'1798'

X'0782213400'

X'0004'

X'0782000911'

X'F2F2'

X'0782000E00'

X'00DC'

X'2548'

X'1060'

X'D7C3C9C4D3E4F0F4'

X'05C3D5D4F0F1'

X'0D82'

X'00DA11C3D6D4D460C5D9D9'

X'068200D1010F'

X'3631'

X'060211340500'

X'0512C5D5E4'

X'032112'

X'2630'

X'E3C8C9E240E2E4C2C6C9C5D3C440C9C4C5D5E3C9C6C9C5E240E3C8C540E3C5E7E340D4E2'

00 SF - hardware product identifier

98 SV - Detailed Data

48 SV - Correlation

31 SV - Self Defining Text Message

02 SF - Coded Character Set ID

12 SF - National Language ID

21 SF - Sender ID

30 SF - Text Message

11 SV - Product Identifier

82 SF - qualifier

82 SF - qualifier

82 SF - qualifier

60 SF - correlation for supporting data

82 SF - qualifier

82 SF - qualifier

X'2796'

X'0601'

X'0503'

X'33C2'

X'068200'

X'61'

X'0004'

X'0C8200'

X'53'

X'11F0F0406040F1C6'

X'0A81'

X'0611'

X'0500'

X'3110'

X'00E1'

X'038321'

X'1705'

X'151000'

X'07D7E4F9F9F9F900F1'

X'07D3C9D5C5F0F440F9'

X'4D1000'

X'341104'

X'0E02C1C3C661C9C2D44040F0F0F3'

X'0804F0F1F0F2F0F3'

X'0A06C1C3C661C9C2D440'

X'0A07C6C6C7C1C9E3D9F3'

X'07098603351225'

code point

code point

code point

code point

code point

code point

code point

code point

name/type pair

name/type pair

02 SF - software product serviceable component ID

04 SF - software product common level

06 SF - software product common name

07 SF - software product customization ID

09 SF - software product customization date and time

96 SV - Failure Cause(s) and Action(s)

05 SV - Resource Hierarchy

10 SV - PSID

01 SF - failure cause(s)

82 SF - qualifier(s)

82 SF - qualifier(s)

81 SF - recommended action(s)

83 SF

10 SF

11 SV - Product Identifier

X'41038D5002000000'

X'01230000'

X'0A0108105901020A2827'

X'0B92000001'

X'1603'

X'1A2B3C4D'

X'0693'

X'0403'

X'2012'

X'1195'

X'0601'

X'1502'

X'13E1'

X'038391'

X'0681'

X'0101'

X'1504'

Response Header

Major Vector Length and Key

01 SV - Date/Time

92 SV - Alert Description

93 SV - Probable Cause(s)

95 SV - Install Cause(s) and Action(s)

code point

code point

code point

01 SF - install cause(s)

83 SF - qualifier(s)

81 SF - recommended action(s)

code point

code point

code point

code point

Figure 21. Sample Generic Alert Record

94 Customization Guide

Alerts-Dynamic Panel

An entry on the Alerts-Dynamic panel is built from a number of subvectors (X'92',
X'93', and X'05'). Figure 21 on page 94 creates the results for Figure 22.

▌1▐ The RESNAME and TYPE come from the last name and type pair in the X'05'
subvector. The sample display shows a RESNAME of PU9999 and a TYPE of LINE.

▌2▐ The * indicates that the RESNAME preceding the TYPE does not belong to the
TYPE. The TYPE is always associated with the last name in the hierarchy, but the
name depends on how the X'05' is coded. The Do Not Display Resource Name
Indicator bit is set to 1 for the last name and type pair (subvector X'05', subfield
X'10', second name and type pair, eighth byte, second bit).

▌3▐ The ALERT DESCRIPTION is derived from code point X'1603' in the X'92'
subvector. The code point provides an index into a table containing the alert
description text messages. The sample shows an ALERT DESCRIPTION of COMM
SUBSYSTEM FAILURE.

▌4▐ The PROBABLE CAUSE is derived from code point X'0403' in the X'93' subvector.
The code point provides an index into a table containing the probable cause text
messages. The sample shows a PROBABLE CAUSE of COMM SUBSYSTEM CTRL.

▌5▐ The + is included because the X'93' subvector in Figure 22 contains more than
one probable cause code point. The + indicates that more probable causes can be
seen on the Event Detail panel.

Figure 23 on page 96 shows a sample Recommended Action panel. Explanations of
the numerical references follow the panel.

N E T V I E W SESSION DOMAIN: CNM01 OPER1 03/01/11 14:41:03
NPDA-30A * ALERTS-DYNAMIC *

DOMAIN RESNAME TYPE TIME ALERT DESCRIPTION:PROBABLE CAUSE
CNM01 PU9999 *LINE 14:41 COMM SUBSYSTEM FAILURE:COMM SUBSYSTEM CTRL +

▌1▐ ▌2▐ ▌3▐ ▌4▐ ▌5▐

DEPRESS ENTER KEY TO VIEW ALERTS-STATIC

???
CMD==> _

Figure 22. Sample of Alerts-Dynamic Panel.

Sample of Alerts-Dynamic Panel

Chapter 6. Customizing Hardware Monitor Displayed Data 95

Recommended Action for Selected Event Panel

The Recommended Action panel is built from a number of subvectors (X'94', X'95',
and X'96') and subfields (X'01', X'81', X'82', and X'83').

▌1▐ The resource names (PU9999 and LINE04) are taken from the X'05' hierarchy
names list subvector. In Figure 21 on page 94, only names from the X'05' subvector
are used because the Hierarchy Complete Indicator bit (byte 2 bit 0) in the
indicator bit X'05' subvector is set to X'0'. If this bit was set to 1, the NetView
program would concatenate the names in the X'05' subvector to the names
supplied by VTAM.

▌2▐ The resource types (PU and LINE) are derived by converting the type codes in
the X'10' subfield of the X'05' subvector (X'F1' and X'F9') into displayable resource
types. For more information on changing resource types, see “Adding or
Modifying Resource Types” on page 103.

▌3▐ The X'94' subvector (NONE) carries user-caused information. Because the X'94'
subvector is not included in Figure 21 on page 94, user-caused information is not
displayed.

▌4▐ The two install-caused probable causes:
INCORRECT MICROCODE FIX
INCORRECT SOFTWARE GENERATION:

are built from code points (X'1502' and X'13E1') in the X'01' subfield within the
X'95' subvector. The E in the X'13E1' code point indicates an X'83' subfield is
needed to complete the install cause.

N E T V I E W SESSION DOMAIN: CNM01 OPER1 03/01/11 14:41:17
NPDA-45A * RECOMMENDED ACTION FOR SELECTED EVENT * PAGE 1 OF 1
CNM01 PU9999 LINE04 ▌1▐

+--------+
DOMAIN | PU |----LINE---- ▌2▐

+--------+

USER CAUSED - NONE ▌3▐

INSTALL CAUSED - INCORRECT MICROCODE FIX ▌4▐
INCORRECT SOFTWARE GENERATION: ACF/IBM ▌5▐

ACTIONS - I013 - VERIFY X.25 SUBSCRIPTION NUMBER ▌6▐
I085 - APPLY CORRECT SOFTWARE LEVEL

FAILURE CAUSED - COMMUNICATIONS SUBSYSTEM ▌7▐
LINE ADAPTER MICROCODE

ADAPTER NUMBER 04 ▌8▐
LINE ADDRESS RANGE 00 - 1F ▌9▐

ACTIONS - I032 - DUMP CHANNEL ADAPTER MICROCODE ▌10▐
I026 - RUN APPROPRIATE TRACE
I136 - CONTACT COMMUNICATIONS SYSTEMS PROGRAMMER
I010 - PERFORM 9999 PROBLEM DETERMINATION PROCEDURES

▌11▐

ENTER DM (DETAIL MENU) OR D (EVENT DETAIL)

???
CMD==> _

Figure 23. Sample of Recommended Action for a Selected Event Panel.

Sample of Recommended Action for a Selected Event Panel

96 Customization Guide

▌5▐ The qualifier on the install cause (ACF/IBM) is displayed because of the X'83'
subfield of the X'95' subvector. The X'83' subfield contains the value X'91'
indicating that the qualifier is taken from the product ID subfield (X'06' Software
Product Common Name) of the first product identifier subvector (X'11').

▌6▐ The two install-caused actions:
I013 - VERIFY X.25 SUBSCRIPTION NUMBER
I085 - APPLY CORRECT SOFTWARE LEVEL

are taken from code points (X'0101' and X'1504') in the X'81' subfield of the X'95'
subvector.

▌7▐ The two failure-caused probable causes:
COMMUNICATIONS SUBSYSTEM
LINE ADAPTER MICROCODE

are taken from code points (X'0503' and X'33C2') in the X'01' subfield of the X'96'
subvector. The C in the X'33C2' code point indicates that two detail data subfields,
either X'82' or X'85' subfields, are needed to complete the failure cause. This
example uses X'82' subfields. While either X'82' or X'85' subfields can be used here,
a combination of the two would not be valid. Within a subvector, all of the detail
qualifiers must be X'82' subfields or X'85' subfields.

▌8▐ Indicates the ADAPTER NUMBER 04 is broken down from the first X'82' subfield in
the X'96' subvector. The number can be:

00 No information is taken from the PSID subvector

61 A code point for adapter number

00 Hexadecimal data follows

04 Hexadecimal data to be displayed

▌9▐ LINE ADDRESS RANGE 00 - 1F is broken down from the second X'82' subfield in
the X'96' subvector. The range can be:

00 No information is taken from the PSID subvector

53 A code point for line address range

11 EBCDIC data follows

F0F0406D40F1C6
EBCDIC data to be displayed

▌10▐ The failure-caused actions:
I032 - DUMP CHANNEL ADAPTER MICROCODE
I026 - RUN APPROPRIATE TRACE
I136 - CONTACT COMMUNICATIONS SYSTEMS PROGRAMMER
I010 - PERFORM 9999 PROBLEM DETERMINATION PROCEDURES

are taken from the code points (X'0611', X'0500', X'3110', and X'00E1') in the X'81'
subfield of the X'96' subvector. The E in the X'00E1' code point indicates that an
X'83' subfield is needed to complete the failure cause.

▌11▐ The qualifier on the failure cause (9999) is displayed because of the X'83'
subfield of the X'96' subvector. The X'83' subfield contains the value X'21',
indicating that the qualifier is taken from the first hardware PSID subfield (X'00')
of the PSID subvector (X'11').

Chapter 6. Customizing Hardware Monitor Displayed Data 97

Figure 24 and Figure 25 show sample Event Detail panels. Explanations of the
numerical references follow the figures.

Event Detail Panel

The Event Detail panel is built from subvectors X'92', X'93', X'98', X'01', X'31', and
X'48', and subfield X'82'.

N E T V I E W SESSION DOMAIN: CNM01 OPER1 03/20/11 14:41:32
NPDA-43S * EVENT DETAIL * PAGE 1 OF 2

CNM01 PU9999 LINE04 ▌1▐
+--------+

DOMAIN | PU |----LINE---- ▌2▐
+--------+

DATE/TIME: RECORDED - 01/02 10:41 CREATED - 03/20/11 10:40:39 ▌3▐

EVENT TYPE: PERMANENT ▌4▐

DESCRIPTION: COMMUNICATIONS SUBSYSTEM FAILURE ▌5▐
PROBABLE CAUSES:

COMMUNICATIONS SUBSYSTEM CONTROLLER ▌6▐
TOKEN-RING LAN

QUALIFIERS:
1) 9999 COMMUNICATION CONTROL UNIT 0004 ▌7▐

ENTER A (ACTION) OR DM (DETAIL MENU)

???
CMD==> _

Figure 24. Sample of Event Detail Panel (Page 1).

Sample of Event Detail Panel (Page 1)

N E T V I E W SESSION DOMAIN: CNM01 OPER1 03/20/11 14:41:49
NPDA-43S * EVENT DETAIL * PAGE 2 OF 2

CNM01 PU9999 LINE04
+--------+

DOMAIN | PU |----LINE----
+--------+

QUALIFIERS (CONTINUED):
2) EVENT CODE 22
3) REASON CODE 00DC

CONTROL PROGRAM TEXT: ▌8▐
THIS SUBFIELD IDENTIFIES THE TEXT MS

CORRELATION FOR SUPPORTING DATA ▌9▐
PCID: PCIDLU01 NETWORK QUALIFIED NAME: CNM01
1) LOG ID COMM_ERR
2) LOG RECORD NUMBER 15

UNIQUE ALERT IDENTIFIER: PRODUCT ID - ACF/IBM ALERT ID - 1A2B3C4D
▌10▐ ▌11▐

ENTER A (ACTION) OR DM (DETAIL MENU)

???
CMD==> _

Figure 25. Sample of Event Detail Panel (Page 2).

Sample of Event Detail Panel (Page 2)

98 Customization Guide

▌1▐ The resource names (PU9999 and LINE04) are taken from the X'05' hierarchy
names list subvector. In Figure 21 on page 94, only names from the X'05' subvector
are used because the Hierarchy Complete Indicator bit (byte 2, bit 0) in the X'05'
subvector is set to X'0'. If this bit was set to 1, the NetView program would
concatenate the names in the X'05' subvector to the names supplied by VTAM.

▌2▐ The resource types (PU and LINE) are derived by converting the type codes in
the X'10' subfield of the X'05' subvector (X'F1' and X'F9'), into displayable resource
types. For more information on changing resource types, see “Adding or
Modifying Resource Types” on page 103.

▌3▐ The DATE/TIME RECORDED is the time the record is logged to the hardware
monitor database. The created field shows the time the record was created by the
sending product. It is taken from the X'10' subfield of the X'01' subvector.

▌4▐ EVENT TYPE is derived from byte 4 (Alert Type) the X'92' subvector.

▌5▐ DESCRIPTION is derived from the code point (X'1603') in the X'92' subvector, as
is the description on the Alerts panel. However, a longer version of the text is
displayed on this panel.

▌6▐ PROBABLE CAUSES are taken from the code points (X'0403' and X'2012') in the
X'93' subvector. A longer version of the text is displayed on this panel than was
displayed on the Alerts panel. Also, all of the probable causes are displayed.

▌7▐ QUALIFIERS are derived from either X'82' or X'85' subfields. The NetView
program ignores X'01' subfields and associated sub-subfields (including X'82' and
X'85') in a X'98' subvector.

While either X'82' or X'85' subfields can be used here, a combination of the two
would not be valid. Within a subvector, all of the detail qualifiers must be X'82'
subfields or X'85' subfields.

This example uses X'82' subfields, and the qualifiers are decoded as follows:

First in the X'98' subvector:

21 Data should be taken from the first hardware PSID subfield (X'00') of the
PSID subvector (X'11').

34 Code point indicating communication control unit.

00 Hexadecimal data follows.

0004 Hexadecimal data to be displayed.

Second in the X'98' subvector:

00 No data is taken from the PSID subvector.

09 Code point indicating event code.

11 EBCDIC data follows.

F2F2 EBCDIC data to be displayed.

Third in the X'98' subvector:

00 No data is taken from the PSID subvector.

0E Code point indicating reason code.

Chapter 6. Customizing Hardware Monitor Displayed Data 99

00 Hexadecimal data follows.

00DC Hexadecimal data to be displayed.

Page 2 of the Event Detail panel (see Figure 24 on page 98) contains the following
information:

▌8▐ CONTROL PROGRAM TEXT is the text title displayed because of the subfield X'21' of
subvector X'31'. The text itself is taken directly from subfield X'30' of the X'31'
subvector and displayed on the screen.

▌9▐ The CORRELATION FOR SUPPORTING DATA is displayed from the X'48' subvector.
Subfield X'60' specifies that the network-qualified procedure correlation identifier
be used to uniquely identify a session.

Either X'82' or X'85' subfields are used for supporting data. This example uses two
X'82' subfields to identify the supporting data.

While either X'82' or X'85' subfields can be used here, a combination of the two is
not valid. Within a subvector, all of the detail qualifiers must be X'82' subfields or
X'85' subfields.

▌10▐ The product ID (ACF/IBM) is taken directly from the first product identifier
(X'11') subvector in the first PSID (X'10') subvector. Figure 21 on page 94 uses the
Software Product Serviceable Component Identifier (X'02') subfield.

▌11▐ The alert ID number (1A2B3C4D) is taken from subvector X'92' bytes 7–10.

Modifying Generic Code Point Tables
This section explains how to modify the generic alert code point tables that are
shipped with the NetView program. You can modify the tables before or after
NetView initialization. If after, use the CPTBL command to dynamically activate
the changes. The CPTBL command is described in NetView online help.

Table Formats
Each table contains a different type of code point. The tables are:
v BNJ92TBL: Alert description code points
v BNJ93TBL: Probable cause code points
v BNJ94TBL: User cause code points
v BNJ95TBL: Install cause code points
v BNJ96TBL: Failure cause code points
v BNJ81TBL: Recommended action code points
v BNJ82TBL: Detail data code points
v BNJ85TBL: Detail data code points, X'85' subfield
v BNJ86TBL: Actual action code points.

The fourth and fifth characters of the table name identify the subvector or subfield
that contains the code points.

The first entry in the code point table is the control entry. Columns 1 and 2
represent the subvector number which specifies which of the code point tables is
being created or updated. Acceptable values are 92, 93, 94, 95, 96, 81, 82, 85, or 86.
During initialization, this number must match the table name. Column 3 must be
blank and all remaining columns are unused and are ignored. (You should not use

100 Customization Guide

this area for comments because it may be used for other purposes in the future.)
When using the CPTBL command, the name of the file that contains the code point
definitions does not have to be one of the predefined names. The NetView
program uses this control entry to determine the table type.

The format of each subsequent entry in the code point table is:
v Columns 1–4 contain the 4-character hexadecimal code point number. Valid

characters are 0–9 and A–F. The code point range from X'E000' to X'EFFF' is
reserved for your use. To use code points outside this range, contact the Tivoli
Support Center.
If a code point is defined more than once in a given table, the first entry is used,
subsequent entries are ignored, and an informational message is generated.

v Column 6 contains the embed flag (Y) indicating that qualifier data associated
with the X'82', X'83', or X'85' subfield is placed before the code point's text,
embedded within the code point's text, or follows on the same line after the
code point's text. Any character other than Y indicates that the embed flag is off.
If the embed flag is turned on, the embed information included in the generic
alert is embedded at the point marked by a dollar sign ($). Embedded text is
only supported for BNJ81TBL, BNJ86TBL, BNJ94TBL, BNJ95TBL, and BNJ96TBL.
Because no variable substitution is allowed for probable cause and alert
description, an embed flag is ignored in BNJ92TBL and BNJ93TBL.

v Columns 8–72 contain the text description for this code point. The maximum
length of the text varies as follows:
– Probable cause: 40 characters for the first entry of a given code point, 20 for

the second. (See ▌4▐ in “Example of BNJ92TBL Code Points Table” on page
102 for an explanation of the second entry.)

– Alert description: 40 characters for the first entry of a given code point, 25 for
the second. (See ▌4▐ in “Example of BNJ92TBL Code Points Table” on page
102 for an explanation of the second entry.)

– Detail data: 40 characters
– Others: 108 characters.
Start in column 2 when continuing the text on the next line.

v Columns 73–80 are ignored and can be used for optional sequence numbers.

Note:

1. Code points in table BNJ82TBL must be left-justified and padded with zeros.
For example, you enter code point 12 as 1200.

2. The text for the code point entries added to the NetView BNJ81TBL code point
table should begin with Ennn. The text for the code point entries added to the
NetView BNJ86TBL code point table should begin with Rnnn. The use of Ennn
and Rnnn allows the code points to be supported by the ACTION command
list (for more information on the ACTION command list, refer to the NetView
online help). The action text in BNJ81TBL and BNJ86TBL should begin this way.
Otherwise, when BNJDNUMB is used to generate recommended action
numbers, it overlays the first 4 bytes of the recommended action text.

3. The hardware monitor searches the tables for the specific code points. If a
match is not found, the hardware monitor searches some tables for a general
code point.
A general code point is the code point with the last 2 bytes set to zero. For
example, if the specific code point is 1620, the general code point is 1600. If a
general code point is found, its text is returned as if it matched the original
code point. A general code point contains text that is valid for all specific code

Chapter 6. Customizing Hardware Monitor Displayed Data 101

points that it applies to. General code points are not available for BNJ82TBL
and BNJ85TBL (for information on general code points, refer to the SNA
library).

4. All code point tables are in uppercase. However, if you want to enter your own
code in lowercase or mixed case, the NetView program does not convert the
text to uppercase.

Use of %INCLUDE Statements
The use of %INCLUDE statements in the code points tables allows you to organize
your code points information for easier maintainability.

You can choose to have one main table for each code point type. This table can
contain the code points shipped with the NetView program and %INCLUDE
statements for user-defined subtables and subtables defined by other products.

BNJxxTBL (where xx is the table number) are tables Tivoli does not recommend
modifying. Use these tables as main tables for each code point. If customization of
these tables is required, use the BNJxxUTB (where xx is the table number) file
which is included by the main table (BNJxxTBL) for this purpose.

Example of BNJ92TBL Code Points Table
An example of a code points table is shown in “Sample of BNJ92TBL Code Points
Table.” Explanations of the numeric references follow the figure.

Sample of BNJ92TBL Code Points Table
* An asterisk in column 1 indicates a comment line.
* The following line is the control entry indicating table type.

▌1▐92
* Blank lines are allowed for readability.

▌2▐%INCLUDE BNJ92UTB
▌3▐ ▌4▐
0100 SIMPLE CODE POINT TEXT;

▌5▐E123 THIS TEXT IS EXACTLY FORTY CHARS LONG XX;
E123 THIS IS THE SAME IN 25 XX;

▌6▐FFFF

▌1▐ The first non-comment line is the control entry.

▌2▐ Code point tables can use %INCLUDE statements to embed other files into the
code point table.

▌3▐ The code point (0100) is a 4-character hexadecimal number, starting in column
1.

▌4▐ The text description in columns 8–72 appears on the hardware monitor
displays.

▌5▐ The hardware monitor has different panel formats that allow different length
text for alert descriptions (92) and probable causes (93). The maximum length of
the text for either entry is 40 characters. Abbreviated text is required, if the text
exceeds 25 characters for alert descriptions or 20 characters for probable causes.
Errors occur for text entries greater than 40 characters.

▌6▐ Any entries in the table with code point FFFF and no text are ignored (to allow
for migration). Entries with code point FFFF and text are treated as any other code
point.

102 Customization Guide

Example of BNJ94TBL Code Points Table
Another example of a code points table is shown in “Sample of BNJ94TBL Code
Points Table.”

Sample of BNJ94TBL Code Points Table
* An asterisk in column 1 indicates a comment line.
* The following line is the control entry indicating table type.
94

▌1▐%INCLUDE BNJ94UTB
▌2▐0100 Y CODE POINTS TEXT WITH DETAIL INSERTS $ AND $
▌3▐0200 CODE POINTS TEXT ILLUSTRATING CONTINUATION OF THE TEXT TO A SECON

D LINE
▌4▐0100 DUPLICATE TEXT

▌1▐ Code point tables can use %INCLUDE statements to embed other files into the
code point table.

▌2▐ The embed flag (Y in column 6) indicates that qualifier data is embedded at the
point marked by a dollar sign ($).

▌3▐ Start in column 2 when continuing text on the next line. The text on the first
line starts in column 8 and continues through column 72.

▌4▐ Because this code point has already been defined in the table, this entry is
ignored and an informational message is generated.

Activating the Modified Code Point Tables
The CPTBL command is very similar to the AUTOTBL command and is used to
dynamically activate changes made to code point tables after the NetView program
is initialized (for a description of the CPTBL command, refer to NetView online
help). Use the TEST option on the CPTBL command to verify the syntax of a code
point table before activation.

Adding or Modifying Resource Types
You can add new resource types for hierarchical displays in the hardware monitor
by modifying the member BNJRESTY.

BNJRESTY is a member of the data set NETVIEW.V6R2M1.BNJPNL2, defined by
the definition statement BNJPNL2 in the NetView start procedure.

“Sample Contents of BNJRESTY” shows the format for BNJRESTY. Explanations of
the numeric references follow the figure.

Sample Contents of BNJRESTY
▌1▐ ▌2▐▌3▐
10 DISK your comments

▌1▐ A 2-character hexadecimal number, starting in column 1, flows to the NetView
program in the X'05' subvector. Valid characters are 0–9 and A–F. If you include
duplicate hexadecimal codes, the system uses the first entry of the duplicated code.
Numbers from X'E0' to X'EF' are reserved for customer-defined resource types.

▌2▐ The four characters in columns 4–7 are taken as the resource type. Valid
characters are 0–9, A–Z, and any printable special characters. A resource type of

Chapter 6. Customizing Hardware Monitor Displayed Data 103

less than 4 characters must begin in column 4, and be padded on the right with
blanks. Do not use delimiters, such as a comma (,), period (.), or equal sign (=), as
characters in the resource type.

▌3▐ An optional comment can begin anywhere after the resource type.

If BNJRESTY is modified while the hardware monitor task BNJDSERV is active, the
new resource types are not recognized. Use STOP TASK=BNJDSERV followed by
STARTCNM NPDA so that the NetView program can recognize any new resource
types or use the RTTBL command to activate a modified BNJRESTY member.

If the NetView program finds an entry that is not valid in BNJRESTY during
activation of the NetView program or when the RTTBL command is invoked, an
error message appears on the command facility console and the NetView program
uses the resource types that are supplied by IBM.

104 Customization Guide

Chapter 7. Modifying Network Asset Management Command
Lists

Network asset management provides a way of collecting inventory data from a
subset of hardware and software devices automatically. You can use network asset
management to collect vital product data (VPD) such as serial numbers, machine
types, and model numbers for hardware products and software information. This
information includes version and release levels. However, the NetView program
does not verify the returned data from devices supporting network asset
management; it only provides a way to collect and log the data.

Reference: Refer to the IBM Tivoli NetView for z/OS Administration Reference for
information on the record formats. Refer to the NetView online help for
information about the command lists that are provided with the NetView program.

Any device that supports the REQUEST/REPLY PSID architecture can report VPD
to the NetView program. An attempt to solicit VPD from a device that does not
support the architecture can cause the keyboard to lock or extraneous data to
appear on the screen. You may need to press the RESET key or clear the screen,
but these actions do not affect the VPD collection in the NetView program.

Reference: Refer to the SNA library for information on the REQUEST/REPLY
PSID architecture.

The following examples are some physical units (PUs) that support the
REQUEST/REPLY PSID architecture:
v 3720/NCP
v 3725/NCP
v 3745/NCP
v 3174 that reports data for itself and many types of attached devices such as

various models of 3191, 3192, and 3194 display stations.

Personal computers running OS/2 are required with these products.

Reference: Instructions for entering VPD for a device are located in the user's
guides for that device.

Network asset management provides the VPDCMD command to solicit VPD from
a given device and the VPDLOG command to build and log a record to an external
logging facility (such as SMF). You can use Service Level Reporter (SLR) to view
the data interactively or to generate reports, or the VPDALL command to generate
VPDPU and VPDDCE command entries for all devices within a NetView domain.
If you have any resources that require switched lines, be sure that the switched
lines are active before collecting VPD.

Network asset management provides the following command lists:

VPDPU
Collects and logs VPD from a single PU and its attached devices. You can
enter this command list from an operator's console or from another
command list.

© Copyright IBM Corp. 1997, 2015 105

VPDDCE
Solicits and logs VPD from DCEs that are in a direct path between a
specified NCP and a specified PU. You can issue this command list from
an operator's console or from another command list.

VPDACT
Is the default name of a command list that the VPDALL command
generates when issued with the CREATE option. VPDALL reads a VTAM
configuration member in VTAMLST as input and generates a command list
called VPDACT (the default). VPDACT contains a list of VPDPU and
VPDDCE entries for devices in your domain. You can later issue VPDACT
to collect and log VPD from the supported devices in the NetView domain.

VPDLOGC
Is the command list that builds and logs START and END records. A
START record is generated for a VPDACT command list at the beginning
of a VPD solicitation. An END record is generated for a VPDACT
command list at the end of a VPD solicitation. Do not issue this command
list from an operator's console or from a user-written command list.

VPDXDOM
Is a service command list used for VPD solicitation from cross-domain
resources. This command list is driven through a NetView automation
table. Do not issue this command list from an operator's console or from a
user-written command list.

Reference: Refer to IBM Tivoli NetView for z/OS Administration Reference for the
record formats and the NetView online help for descriptions of VPD command
lists. Refer to IBM Tivoli NetView for z/OS Automation Guide for additional
information.

VPD Collection from a Single PU
The following list describes the procedures for collecting VPD from a single PU
and its attached devices:
1. Specify a resource name and issue the VPDPU or VPDDCE command list.
2. The command list issues a VPDCMD command to solicit data from the

specified resource, and waits for the response messages.
3. A PU responds with VPD for itself, or for itself and its attached devices.
4. The command list traps the response messages and saves the VPD, such as

machine type, model number, and serial numbers, in command list variables.
5. When the completion message is received, the command list builds records and

writes them to an external logging facility.
6. If any abnormal events occur before completion, a command list error message

is issued and the command list terminates. An abnormal event can be a logging
failure, an inactive VPDTASK, or an abend.

VPD Collection from a Single NetView Domain
The following list describes procedures for collecting VPD from a single NetView
domain:
1. A NetView operator enters the following command:

VPDALL CONFIG(ATCCON01),CREATE,CLIST(VPDACT),ADD

2. The VPDALL command list reads the specified nodes from the configuration
member (ATCCON01, in this example) in VTAMLST. VPDALL extracts all the

106 Customization Guide

resource names from the VTAMLST nodes so that VPD can be collected.
VPDALL then builds VPDPU and VPDDCE entries in a command list called
VPDACT. VPDALL does not support dynamic reconfiguration decks (DRDs) or
DCEs on switched lines.

Note: To collect data from the entire domain, the configuration member must
contain the definitions for all the resources in the domain.

3. You can modify VPDACT by adding or deleting resource names.
4. When the VPDACT command list is executed, VPDLOGC is called to generate

a START record. VPDACT then calls the VPDPU and VPDDCE command lists
and, after they are complete, calls the VPDLOGC to generate an END record.

Focal Point VPD Collection
Figure 26 shows a focal point NetView program for VPD.

The following steps describe the procedures for the collection of VPD for the
sample focal point NetView program shown in Figure 26.
1. During installation, NV1 sets the common global variable SMFVPD to 200.

NV2 sets the common global variable to 250.

Note: CNMSTYLE sets the common global variable SMFVPD to 37.
2. NV1 is designated as a focal point NetView program for VPD collection. In

the NetView automation table (DSITBL01), for NV1 only, uncomment the
statement designated to drive the VPDXDOM command list.

Reference: For more information, refer to the IBM Tivoli NetView for z/OS
Installation: Configuring Additional Components.

3. Start DSIELTSK from the focal point NetView NV1.
4. NV1 establishes a direct OST-to-NNT session with NV2 using the START

DOMAIN command.
5. NV1 issues START VPDTASK.
6. NV1 issues ROUTE NV2, START VPDTASK.
7. NV1 issues ROUTE NV2, VPDACT. This causes the VPDACT command list in

NV2 to run under an NNT.
8. In NV2, VPDACT verifies that it is running under an NNT, and generates the

following message:
MSG OPID X$S VPDLOG 250 ’1 STRING1 10 STRING2...’

SMFVPD=200 SMFVPD=250OST

START DOMAIN

ROUT NV2, START VPDTASK
DSITBL01

VPDXDOM Changes
SMFVPD to 200

ROUT NV2, VPDACT

MSG OPID X$S VPDLOG 250 DATA

NV1

NNT

NV2 External
Logging

Figure 26. VPD Focal Point NetView Program

Chapter 7. Modifying Network Asset Management Command Lists 107

where X$S is a special string recognized by the NetView automation table.
9. When the VPDACT command list in NV2 writes the generated message to the

operator in NV1, the message triggers the NetView automation table to
execute the VPDXDOM command list in NV1.

Reference: Refer to IBM Tivoli NetView for z/OS Automation Guide for
additional information about the VPXDOM command list.

10. When VPDXDOM is entered, the message string is as follows:
DSI039I MSG FROM OPID : X$S VPDLOG 250 1 STRING1...

11. VPDXDOM verifies that NV1 set SMFVPD as a common global variable and
changes SMFVPD from 250 (NV2) to 200 (NV1).

12. VPDLOGC logs the data records under NV1's SMF record number 200.
13. Be sure that the cross-domain session stays active until after the VPD

solicitation is completed.

Customization Considerations
You can customize the VPD command lists that are provided with the NetView
program to suit your requirements.

When modifying network asset management command lists to build different
record formats, do not exceed 256 bytes per record. The NetView program has a
command string limitation of 240 characters. You can write a command processor
to make full use of the VPD command.

Reference: Refer to IBM Tivoli NetView for z/OS Programming: Assembler for
information about command processors.

If you are changing the SMF record format, you cannot use record number 37. You
must globally define the SMF record number within the user-defined range of
128–255. If you are using SLR, you must write the SLR table to match your
modified SMF record format.

Reference: Refer to NetView online help and IBM Tivoli NetView for z/OS
Programming: REXX and the NetView Command List Language for limitations on the
use of &WAIT and RESET, and for considerations regarding the issuance of a
second network asset management command list and network asset management
command while a previous network asset management command list is running.

To improve performance, you can do the following:
v Write a command list that reads in VPDACT to distribute the workload among

several autotasks. Dividing the workload among several OSTs or autotasks
allows multiple VPDPU or VPDDCE entries to execute simultaneously.
Otherwise, the VPDPU and VPDDCE entries are executed serially.

v Create several configuration members (for example, one member for each major
node) or, using VPDALL, create several command lists.

v Make each command list run under several tasks, such as an OST and an
autotask.

108 Customization Guide

Chapter 8. Customizing the Event/Automation Service

With the Event/Automation Service (E/AS), you can manage all network events
from the platform of your choice. You can use either an event server (such as Tivoli
Netcool/OMNIbus or Tivoli Enterprise Console®) or the NetView for z/OS
program to see a comprehensive list of events in your network.

Event/Automation Service: Overview
The Event/Automation Service consists of the following services:
v Alert adapter service

The alert adapter service is an event adapter that converts NetView for z/OS
alerts to Event Integration Facility (EIF) events and forwards the events to a
designated event server. The alert adapter service collects filtered SNA alerts
directly from the NetView hardware monitor and translates the alerts into
appropriate event class or subclass instances. To receive alerts from the NetView
program, the Event/Automation Service registers with the NetView PPI. Filtered
alerts from the NetView hardware monitor are sent over the PPI to the alert
adapter service. All alerts to be converted will match the formats described in
the IBM Systems Network Architecture Management Services Reference.

v Confirmed alert adapter service
The confirmed alert adapter service is an event adapter that converts NetView
for z/OS alerts to EIF events. The resulting events are forwarded to a designated
event server. The event server then replies with a confirmation that indicates
acceptance of the EIF event.
The confirmed alert adapter service collects filtered SNA alerts directly from the
NetView hardware monitor and translates the alerts into appropriate event class
or subclass instances. To receive alerts from the NetView program, the
Event/Automation Service registers with the NetView PPI. Filtered alerts from
the NetView hardware monitor are sent over the PPI to the confirmed alert
adapter service. The confirmation expected by the adapter is described in a note
in the sample class definition statement file IHSABCDS for the confirmed alert
adapter. All alerts to be converted match the formats that are described in the
IBM Systems Network Architecture Management Services Reference.

v Message adapter service
The message adapter service is an event adapter that converts any message
forwarded from NetView message automation into EIF events. The resulting
events are forwarded to a designated event server. The message adapter collects
filtered messages directly from the NetView automation table and translates the
messages into appropriate event class or subclass instances. To receive messages
from the NetView program, the Event/Automation Service registers with the
NetView PPI. Filtered messages from the NetView message automation table are
sent over the PPI to the message adapter.

v Confirmed message adapter service
The confirmed message adapter service is an event adapter that converts any
message forwarded from NetView message automation into EIF events. The
resulting events are forwarded to a designated event server. The event server
then replies with a confirmation that indicates acceptance of the EIF event. The
confirmation expected by the adapter is described in a note in the sample
message format file IHSANFMT for the confirmed message adapter.

© Copyright IBM Corp. 1997, 2015 109

The confirmed message adapter collects filtered messages directly from the
NetView automation table and translates the messages into appropriate event
class or subclass instances. To receive messages from the NetView program, the
Event/Automation Service registers with the NetView PPI. Filtered messages
from the NetView message automation table are sent over the PPI to the
confirmed message adapter.

v Event receiver service
The event receiver service receives events from an event server and converts
them into SNA alerts. The converted alerts are then forwarded to the NetView
hardware monitor where they are filtered and routed to the NetView automation
table.

v Alert-to-trap service
The alert-to-trap service is an SNMP sub-agent that converts NetView for z/OS
alerts to SNMP traps and forwards the traps to an SNMP agent. The alert-to-trap
service collects filtered SNA alerts directly from the NetView hardware monitor
and translates the alerts into appropriate SNMP trap instances. To receive alerts
from the NetView program, the Event/Automation Service registers with the
NetView PPI. Filtered alerts from the NetView hardware monitor are sent over
the PPI to the alert-to-trap service. All alerts to be converted match the formats
that are described in the IBM Systems Network Architecture Management Services
Reference.

v Trap-to-alert service
The trap-to-alert service receives events from an SNMP manager and converts
them into SNA alerts. The converted alerts are then forwarded to the NetView
hardware monitor where they are filtered and routed to the NetView automation
table.

Starting the Event/Automation Service
The Event/Automation Service (E/AS) can be started from either the MVS system
console using a startup procedure, or from the UNIX System Services command
shell using a command file. The sample startup procedure installed with the E/AS
is IHSAEVNT. The command file used to start the E/AS from the UNIX System
Services command shell is IHSAC000.

The environment that the E/AS is started from (either the MVS system console or
the UNIX System Services command shell) determines certain operational
characteristics of the E/AS as follows:
v The location of default configuration files.
v Whether certain startup parameters can be specified.
v The default output logs for trace/error data.

All other operational characteristics of the E/AS are the same regardless of the
startup environment.

For information about installing and starting the E/AS, see the IBM Tivoli NetView
for z/OS Installation: Configuring Additional Components.

Customizing the Initialization of the Event/Automation Service
The Event/Automation Service (E/AS) has a number of configurable settings. A
few must be set by the E/AS administrator in order for the E/AS to successfully
initialize. For more information, refer to IBM Tivoli NetView for z/OS Installation:
Configuring Additional Components.

110 Customization Guide

Configurable settings can be set by the E/AS administrator using configuration
files, startup parameters, and E/AS modification commands. Some configurable
settings can be set using more than one of these methods. Configurable settings are
set in the following order, from highest priority to lowest:
v E/AS modification commands are issued to the E/AS after initialization. Any

E/AS modification commands that affect a configurable setting change that
setting for the duration of the current execution of the E/AS only.

v A configurable setting that is specified as an E/AS startup parameter.
v A configurable setting that is specified in a configuration file.
v The default value of the configurable setting.

E/AS modification commands are discussed fully in the IBM Tivoli NetView for
z/OS Command Reference Volume 1 (A-N).

Defaults for Configurable Settings
The following table lists all configurable settings and their defaults:

Setting Default Overridden by

E/AS PPI name IHSATEC PPI startup parameter, global
initialization file PPI statement

Global initialization file name Started with IHSAEVNT - IHSAINIT

Started with IHSAC000
--/etc/netview/global_init.conf

IHSAINIT startup parameter

Alert adapter configuration file name Started with IHSAEVNT -
IHSAACFG

Started with IHSAC000
--/etc/netview/alert_adpt.conf

ALRTCFG startup parameter, global
initialization file ALRTCFG statement

Confirmed alert adapter
configuration file name

Started with IHSAEVNT -
IHSABCFG

Started with IHSAC000
--/etc/netview/
confirm_alert_adpt.conf

CALRTCFG or -b startup parameter,
global initialization file CALRTCFG
statement

Alert-to-trap configuration file name Started with IHSAEVNT -
IHSAATCF

Started with IHSAC000
--/etc/netview/alert_trap.conf

ALRTTCFG startup parameter, global
initialization file ALRTTCFG
statement

Trap-to-alert configuration file name Started with IHSAEVNT - IHSATCFG

Started with IHSAC000
--/etc/netview/trap_alert.conf

TALRTCFG startup parameter, global
initialization file TALRTCFG
statement

Message adapter configuration file
name

Started with IHSAEVNT -
IHSAMCFG

Started with IHSAC000
--/etc/netview/message_adpt.conf

MSGCFG startup parameter, global
initialization file MSGCFG statement

Confirmed message adapter
configuration file name

Started with IHSAEVNT -
IHSANCFG

Started with IHSAC000
--/etc/netview/
confirm_message_adpt.conf

CMSGCFG or -n startup parameter,
global initialization file CMSGCFG
statement

Chapter 8. Customizing the Event/Automation Service 111

Setting Default Overridden by

Event receiver configuration file
name

Started with IHSAEVNT --
IHSAECFG

Started with IHSAC000
--/etc/netview/event_rcv.conf

ERCVCFG startup parameter, global
initialization file ERCVCFG statement

Output log wrapping 0 OUTSIZE startup parameter

Disable console messages to the z/OS
UNIX System Services shell

Enabled -P startup option

Console messages file name Started with IHSAEVNT --
IHSAMSG1

Started with IHSAC000 --
/usr/lpp/netview/msg/C/ihsamsg1

-M startup option

Trace/error HFS path /tmp -E startup option

Trace settings Off for all tasks Global initialization file TRACE
statement, TRACE command

Service startup All services are started Global initialization file NOSTART
statement

Trace/error data logical destination SYSOUT Global initialization file OUTPUT
statement, OUTPUT command

Event server locations No default Alert adapter, confirmed alert
adapter, message adapter, and
confirmed message adapter
configuration file ServerPort
statement

Event server port numbers For the confirmed alert adapter and
the confirmed message adapter the
default is 5539. For the alert adapter
and the message adapter, the default
value is 0.

Alert adapter, confirmed alert
adapter, message adapter, and
confirmed message adapter file
ServerPort statement

Alert adapter class definition
statement (CDS) file name

Started with IHSAEVNT --
IHSAACDS

Started with IHSAC000
--/etc/netview/alert_adpt.cds

Alert adapter configuration file
AdapterCdsFile statement

Confirmed alert adapter class
definition statement (CDS) file name

Started with IHSAEVNT --
IHSABCDS

Started with IHSAC000
--/etc/netview/
confirm_alert_adpt.cds

Confirmed alert adapter
configuration file AdapterCdsFile
statement

Alert-to-trap adapter class definition
statement (CDS) file name

Started with IHSAEVNT --
IHSALCDS

Started with IHSAC000 --
/etc/netview/alert_trap.cds

Alert-to-trap configuration file
AdapterCdsFile statement

Trap-to-alert adapter class definition
statement (CDS) file name

Started with IHSAEVNT --
IHSATCDS

Started with IHSAC000 --
/etc/netview/trap_alert.cds

Trap-to-alert configuration file
AdapterCdsFile statement

112 Customization Guide

Setting Default Overridden by

Event receiver class definition
statement file name

Started with IHSAEVNT --
IHSAECDS

Started with IHSAC000
--/etc/netview/event_rcv.cds

Event receiver configuration file
AdapterCdsFile statement

Message adapter format file name Started with IHSAEVNT --
IHSAMFMT

Started with IHSAC000 --
/etc/netview/message_adpt.fmt

Message adapter configuration file
AdapterFmtFile statement

Confirmed message adapter format
file name

Started with IHSAEVNT --
IHSANFMT

Started with IHSAC000 --
/etc/netview/
confirm_message_adpt.fmt

Confirmed message adapter
configuration file AdapterFmtFile
statement

Maximum event cache size 64KB Alert adapter, confirmed alert
adapter, message adapter, and
confirmed message adapter
configuration file BufEvtMaxSize
statement

Event cache HFS path /etc/Tivoli/tec/cache Alert adapter, confirmed alert
adapter, message adapter, and
confirmed message adapter
configuration file BufEvtPath
statement

Maximum event cache retrieval
buffer size

64KB Alert adapter, confirmed alert
adapter, message adapter, and
confirmed message adapter
configuration file BufEvtRdblkLen
statement

Amount to shrink the event cache 8KB Alert adapter, confirmed alert
adapter, message adapter, and
confirmed message adapter
configuration file BufEvtShrinkSize
statement

Enable event buffering YES Alert adapter, confirmed alert
adapter, message adapter, and
confirmed message adapter
configuration file BufferEvents
statement

Rate to flush the event cache 0 Alert adapter, confirmed alert
adapter, message adapter, and
confirmed message adapter
configuration file BufferFlushRate
statement

Maximum number of events allowed
in the event cache

0 Alert adapter, confirmed alert
adapter, message adapter, and
confirmed message adapter
configuration file BufferEventsLimit
statement

Chapter 8. Customizing the Event/Automation Service 113

Setting Default Overridden by

Event server connection mode connection_less Alert adapter, confirmed alert
adapter, message adapter, and
confirmed message adapter
configuration file ConnectionMode
statement

Maximum size of an EIF event 4096 bytes Alert adapter, confirmed alert
adapter, message adapter, and
confirmed message adapter
configuration file EventMaxSize
statement

EIF event filtering definitions No filters defined Alert adapter, confirmed alert
adapter, message adapter, and
confirmed message adapter
configuration file Filter statement

EIF event filtering from event cache
definitions

No filters defined Alert adapter, confirmed alert
adapter, message adapter, and
confirmed message adapter
configuration file FilterCache
statement

Mode of EIF event filtering OUT Alert adapter, confirmed alert
adapter, message adapter, and
confirmed message adapter
configuration file FilterMode
statement

Broken connection retry interval and
time to wait for a response

120 seconds Alert adapter, confirmed alert
adapter, message adapter, and
confirmed message adapter
configuration file RetryInterval
statement. Only the confirmed alert
adapter and the confirmed message
adapter wait for a response.

Negative response limit 0 Confirmed alert adapter or confirmed
message adapter configuration file
BufEvtNegRespLimit statement

EIF event forwarding debug mode NO Alert adapter, confirmed alert
adapter, message adapter, and
confirmed message adapter
configuration file TestMode statement

Event receiver PPI name NETVALRT Event receiver configuration file
NetViewAlertReceiver statement

Event receiver port number 0 Event receiver configuration file
PortNumber statement

Enable PortMapper for the event
receiver

YES Event receiver configuration file
UsePortmapper statement

Create a single SV31 from incoming
event data; truncation occurs if
necessary

YES Event receiver service and
trap-to-alert service configuration
files TruncateSV31s statement

Alert-to-trap SNMP agent IP location loopback Alert-to-trap service configuration file
Hostname statement

Alert-to-trap community name public Alert-to-trap service configuration file
Community statement

114 Customization Guide

Setting Default Overridden by

Alert-to-trap Enterprise Object ID 1.3.6.1.4.1.1.1588.1.3 Alert-to-trap service configuration file
Enterpriseoid statement

Trap-to-alert PPI name NETVALRT Trap-to-alert service configuration file
NetViewAlertReceiver statement

Trap-to-alert port number 162 Trap-to-alert service configuration file
PortNumber statement

Customizing the Event/Automation Startup Parameters
Startup parameters can be specified for the IHSAEVNT startup procedure if you
are starting the E/AS from the MVS system console, or on the UNIX System
Services command line for the IHSAC000 command. Startup parameters follow
two general formats:
v parameter=value

v -option [value]

Either format can be used from either startup environment unless otherwise noted
in the information that follows. However, to pass the option/value format to the
IHSAEVNT startup procedure, the list of options and values must be encoded into
a single parameter/value format. The IHSAEVNT startup procedure provides the
following parameter to accomplish this:
OELINE

An example of using the OELINE parameter to pass option/value format startup
parameters to the IHSAEVNT startup procedure follows:
s IHSAEVNT,OELINE=’-opt1 value1 -opt2 value2...’

Use single quotes to surround the options and values passed with the OELINE
parameter.

The option/value format is a case-sensitive format. Ensure you specify the
following options exactly as they are described. Values are not translated to
uppercase. For some options, only the option is specified. There is no
corresponding value associated with the option.

The startup parameters are:

INITFILE=file or -i file
This startup parameter specifies the name of the global initialization file in
file. If you use the INITFILE=file format, the file is a 1–8 character PDS
member name that is associated with the IHSSMP3 data set definition from
the IHSAEVNT startup procedure. This format is not valid when starting
the E/AS from the UNIX System Services command line. If you use the -i
file format, the file is a full MVS data set or HFS path and file name.
Surround MVS data set names with single quotes to make them
fully-qualified data sets. For example:
INITFILE=IHSAINIT
-i ’NETVIEW.V6R2M1.SCNMUXCL(IHSAINIT)’
-i /etc/netview/global_init.conf

MSGCFG=file or -m file
This startup parameter specifies the name of the message adapter
configuration file in file. If you use the MSGCFG=file format, the file is a
1–8 character PDS member name that is associated with the IHSSMP3 data

Chapter 8. Customizing the Event/Automation Service 115

set definition from the IHSAEVNT startup procedure. This format is not
allowed when starting the E/AS from the UNIX System Services command
line. If you use the -m file format, the file is a full MVS data set or HFS
path and file name. Surround MVS data set names with single quotes to
make them fully-qualified data sets. For example:
MSGCFG=IHSAMCFG
-m ’NETVIEW.V6R2M1.SCNMUXCL(IHSAMCFG)’
-m /etc/netview/message_adpt.conf

CMSGCFG=file or -n file
This startup parameter specifies the name of the confirmed message
adapter configuration file in file. If you use the CMSGCFG=file format, the
file is a 1 - 8 character PDS member name that is associated with the
IHSSMP3 data set definition from the IHSAEVNT startup procedure. This
format is not allowed when starting the Event/Automation Service from
the UNIX System Services command line. If you use the -n file format, the
file is a full MVS data set or HFS path and file name. Surround MVS data
set names with single quotation marks to make them fully-qualified data
sets. For example:
CMSGCFG=IHSANCFG
-n ’NETVIEW.V6R2M1.SCNMUXCL(IHSANCFG)’
-n /etc/netview/confirm_message_adpt.conf

ALRTCFG=file or -a file
This startup parameter specifies the name of the alert adapter
configuration file in file. If you use the ALRTCFG=file format, the file is a
1–8 character PDS member name that is associated with the IHSSMP3 data
set definition from the IHSAEVNT startup procedure. This format is not
allowed when starting the E/AS from the UNIX System Services command
line. If you use the -a file format, the file is a full MVS data set or HFS path
and file name. Surround MVS data set names with single quotes to make
them fully-qualified data sets. For example:
ALRTCFG=IHSAACFG
-a ’NETVIEW.V6R2M1.SCNMUXCL(IHSAACFG)’
-a /etc/netview/alert_adpt.conf

CALRTCFG=file or -b file
This startup parameter specifies the name of the confirmed alert adapter
configuration file in file. If you use the CALRTCFG=file format, the file is a
1 - 8 character PDS member name that is associated with the IHSSMP3
data set definition from the IHSAEVNT startup procedure. This format is
not allowed when starting the Event/Automation Service from the UNIX
System Services command line. If you use the -b file format, the file is a
full MVS data set or HFS path and file name. Surround MVS data set
names with single quotation marks to make them fully-qualified data sets.
For example:
CALRTCFG=IHSABCFG
-b ’NETVIEW.V6R2M1.SCNMUXCL(IHSABCFG)’
-b /etc/netview/confirm_alert_adpt.conf

ALRTTCFG=file or -a file
This startup parameter specifies the name of the alert-to-trap service
configuration file in file. If you use the ALRTTCFG=file format, the file is a
1–8 character PDS member name that is associated with the IHSSMP3 data
set definition from the IHSAEVNT startup procedure. This format is not
allowed when starting the E/AS from the UNIX System Services command
line. If you use the -a file format, the file is a full MVS data set or HFS path
and file name. Surround MVS data set names with single quotes to make
them fully-qualified data sets. For example:

116 Customization Guide

ALRTTCFG=IHSAATCF
-l ’NETVIEW.V6R2M1.SCNMUXCL(IHSAATCF)’
-l /etc/netview/alert_trap.conf

TALRTCFG=file or -t file
This startup parameter specifies the name of the trap-to-alert service
configuration file in file. If you use the TALRTCFG=file format, the file is a
1–8 character PDS member name that is associated with the IHSSMP3 data
set definition from the IHSAEVNT startup procedure. This format is not
allowed when starting the E/AS from the UNIX System Services command
line. If you use the -t file format, the file is a full MVS data set or HFS path
and file name. Surround MVS data set names with single quotes to make
them fully-qualified data sets. For example:
TALRTCFG=IHSATCFG
-t ’NETVIEW.V6R2M1.SCNMUXCL(IHSATCFG)’
-t /etc/netview/trap_alert.conf

ERCVCFG=file or -e file
This startup parameter specifies the name of the event receiver
configuration file in file. If you use the ERCVCFG=file format, the file is a
1–8 character PDS member name that is associated with the IHSSMP3 data
set definition from the IHSAEVNT startup procedure. This format is not
allowed when starting the E/AS from the UNIX System Services command
line. If you use the -e file format, the file is a full MVS data set or HFS path
and file name. Surround MVS data set names with single quotes to make
them fully-qualified data sets. For example:
ERCVCFG=IHSAECFG
-e ’NETVIEW.V6R2M1.SCNMUXCL(IHSAECFG)’
-e /etc/netview/event_rcv.conf

PPI=ppiname or -p ppiname
This startup parameter specifies the name of the E/AS PPI mailbox in
ppiname. For example:
PPI=IHSATEC
-p IHSATEC

OUTSIZE=size or -O size
This startup parameter enables output log wrapping and specifies the
maximum size of the output log file, in kilobytes. If size is specified as 0,
output log wrapping is disabled. For more information about E/AS output,
see “Event/Automation Service Output” on page 118.
OUTSIZE=0
-O 0

-M msgfile
This startup parameter specifies the location of the E/AS messages file.
msgfile specifies a full MVS data set or HFS path and filename. Surround
MVS data set names with single quotes to make them fully qualified data
sets. For example:
-M ’NETVIEW.V6R2M1.SDUIMSG1(IHSAMSG1)’
-M /usr/lpp/netview/msg/C/ihsamsg1

-P This startup parameter is not allowed when starting the E/AS from the
IHSAEVNT startup procedure. It is used to disable the forwarding of MVS
system console messages to the UNIX System Services command shell if
the E/AS was started under the UNIX System Services command shell. By
default, a message that is issued to the MVS system console is also issued
at the UNIX System Services command shell.

Chapter 8. Customizing the Event/Automation Service 117

-E path
This startup parameter is not allowed when starting the E/AS from the
IHSAEVNT startup procedure. This startup parameter specifies the HFS
path of trace/error log files. path specifies an HFS path. For example:
-E /tmp

Customizing the Event/Automation Service Configuration Files
The E/AS uses configuration files. These files and their default names are:
v The global initialization file

IHSAINIT or /etc/netview/global_init.conf
v The alert adapter configuration file

IHSAACFG or /etc/netview/alert_adpt.conf
v The confirmed alert adapter configuration file

IHSABCFG or /etc/netview/confirm_alert_adpt.conf
v The alert-to-trap service configuration file

IHSAATCF or /etc/netview/alert_trap.conf
v The trap-to-alert service configuration file

IHSATCFG or /etc/netview/trap_alert_trap.conf
v The message adapter configuration file

IHSAMCFG or /etc/netview/message_adpt.conf
v The confirmed message adapter configuration file

IHSANCFG or /etc/netview/confirm_message_adpt.conf
v The event receiver configuration file

IHSAECFG or /etc/netview/event_rcv.conf

The global initialization file is used to change configurable settings that are
required by all the services. Each of the other configuration files are used to change
configurable settings that are specific to the services. The statements within these
files must all be contained on one line. Each of these files can have comments.
Comment statements begin with the number sign (#).

If the E/AS is started from the IHSAEVNT startup procedure, by default the
8–character PDS name specified is used to locate the file. The file must be in a data
set specified by the IHSSMP3 data set definition statement from the IHSAEVNT
startup procedure. If the E/AS is started from the UNIX System Services command
shell, by default the HFS name specified is used to locate the file.

Every statement in a configuration file can be a comment. If all configuration file
statements are comments, the configuration file will not change any of the
configurable settings. Each of the four configuration files must exist for the E/AS
to properly initialize, even if the file contains nothing but comments. The E/AS
will not initialize if it cannot locate a configuration file.

For more information about the configuration file statements, see the IBM Tivoli
NetView for z/OS Administration Reference.

Event/Automation Service Output
All Event/Automation Service (E/AS) output can be sent to one or both of two
destinations: the generalized trace facility (GTF) and the E/AS output logs. By
default, data is sent to the E/AS output logs. The destination of E/AS output can
be changed using the OUTPUT command or the OUTPUT statement in the global

118 Customization Guide

initialization file. Refer to the IBM Tivoli NetView for z/OS Command Reference
Volume 1 (A-N) and IBM Tivoli NetView for z/OS Administration Reference for more
information.

There is an output log associated with each of the three services, and an output log
associated with the entire E/AS address space. If output log wrapping is disabled,
these output logs are physically represented by one system file. If output log
wrapping is enabled, these output logs are physically represented by two system
files — a primary file and a secondary file.

When wrapping is disabled, all output log data is written to the primary file.

When wrapping is enabled, the wrap size is used to limit the total amount of bytes
that can be written to either the primary or the secondary file. When this wrap size
is exceeded, the current file being used for output log output (either the primary or
secondary file) is closed, and the file that was not previously in use (either the
primary or the secondary) is opened for further logging. Whenever an output log
is opened, all data that was previously in the log is destroyed. Therefore, the
maximum amount of output log data available is 2 times the wrap size (both the
primary and secondary files are full), and the minimum amount of output log data
available is the wrap size (a switch has just occurred to either the primary or
secondary file, destroying all data previously in that file).

For more information about setting output log wrapping, refer to the OUTSIZE
parameter in “Customizing the Event/Automation Startup Parameters” on page
115.

Event/Automation Service Output Log Names
When the E/AS is started using the IHSAEVNT startup procedure, the names of
the output logs are defined by the following data set definition statements within
the IHSAEVNT procedure:
v IHSA (primary file) and IHSAS (secondary file): defines the output log files for

the alert adapter service.
v IHSB (primary file) and IHSBS (secondary file): defines the output log files for

the confirmed alert adapter service.
v IHSC (primary file) and IHSCS (secondary file): defines the output log files for

the E/AS address space.
v IHSE (primary file) and IHSES (secondary file): defines the output log files for

the event receiver service.
v IHSL (primary file) and IHSLS (secondary file): defines the output log files for

an alert-to-trap service.
v IHSM (primary file) and IHSMS (secondary file): defines the output log files for

the message adapter service.
v IHSN (primary file) and IHSNS (secondary file): defines the output log files for

the confirmed message adapter service.
v IHST (primary file) and IHSTS (secondary file): defines the output log files for a

trap-to-alert service.

If output log wrapping is disabled, the data set definition for the secondary file
does not need to be present in the IHSAEVNT startup procedure, but it is a good
practice to leave it in. The data set definition for the primary file must always be
present.

Chapter 8. Customizing the Event/Automation Service 119

By default, the output log files are set to the IHSAEVNT jobs SYSOUT data set. If
SYSOUT data sets are used for the output log files, output log wrapping is
disabled. If you want to enable output log wrapping, you must change these data
set definitions to reference an MVS sequential data set or HFS file.

Note: There is no restriction placed on the type of file that you specify in the data
set definition statements in the IHSAEVNT startup procedure. However, it is
recommended that you do not define a PDS member as an output log file due to
synchronization problems that may occur when trying to write data to the PDS
member. You also should use a different file for each data set definition statement.

Unless you have been instructed to run with tracing enabled by a Tivoli service
representative, it is recommended that you use the default SYSOUT data sets that
are specified in the sample IHSAEVNT startup procedure and do not enable
output log wrapping.

When the E/AS is started using IHSAC000 in the UNIX System Services command
shell, the names of the output log files are defined as follows:
v The files must be HFS files. By default, the path of the files is /tmp. This path

can be changed using the -E startup option. Refer to this option on page “-E
path” on page 117.

v controlp.log (primary file) and controls.log (secondary file) are the names of the
output log files for the E/AS address space. These names cannot be changed.

v alertp.log (primary file) and alerts.log (secondary file) are the names of the
output log files for the alert adapter service. These names cannot be changed.

v calertp.err (primary file) and calerts.err (secondary file) are the names of the
output log files for the confirmed alert adapter service. These names cannot be
changed.

v alrttrpp.log (primary file) and alrttrps.log (secondary file) are output error log
files for the alert-to-trap adapter service.

v trapalrtp.log (primary file) and trapalrts.log (secondary file) are output error log
files for the trap-to-alert service.

v messagep.log (primary file) and messages.log (secondary file) are the names of
the output log files for the message adapter service. These names cannot be
changed.

v cmessagep.err (primary file) and cmessages.err (secondary file) are the names of
the output log files for the confirmed message adapter service. These names
cannot be changed.

v eventrcvp.log (primary file) and eventrcvs.log (secondary file) are the names of
the output log files for the event receiver service. These names cannot be
changed.

The E/AS creates these output log files if they do not exist.

Note: Unless you have been instructed to run with tracing enabled by a Tivoli
service representative, it is recommended that you do not enable output log
wrapping.

Types of Event/Automation Service Output Data
The E/AS generates two types of output data: trace data and error data.

Trace data is only generated if tracing is enabled. By default, tracing is disabled. To
change trace settings, see the IBM Tivoli NetView for z/OS Command Reference Volume

120 Customization Guide

2 (O-Z) for information about the TRACE command, and the IBM Tivoli NetView for
z/OS Administration Reference for information about the global initialization file
TRACE statement.

In general, tracing should only be used if you are requested to do so by a Tivoli
service representative.

Error data is composed of MVS system console messages and output log only
messages. In general, any error condition detected by the E/AS results in an MVS
console message. This console message is also written to E/AS output. To aid in
problem determination, additional messages may also be written to E/AS output.
These output log only messages that were not issued to the MVS system console
may give more detail concerning the problem.

The combination of system console and output log only messages should allow
you to resolve most E/AS problems without the aid of a Tivoli service
representative.

Not all MVS console messages describe error conditions. There are a number of
informational messages that are also issued by the E/AS and sent to E/AS output
logs.

Format of Event/Automation Service Output Data
When an output log file is initially opened, the first entry in the output log file is
composed of the name of the output file followed by a date/time string in the
format:
day month date time year

The following example shows the header for the message adapter service primary
output log file, assuming that the E/AS was started from the IHSAEVNT startup
procedure:
IHSM Fri Feb 20 10:45:55 2011

All other E/AS output data is composed of a header followed by the specific data.

The header is composed of:
v A date/time string in the format:

day month date time year

v The module name of the module where the message was issued
v The line number within the module where the message was issued
v The type of message, which can be one of the following:
v LOW - Specifies this message is issued if the LOW or higher level of tracing has

been enabled.
v NORMAL - Specifies this message is issued if the NORMAL or higher level of

tracing has been enabled.
v VERBOSE - Specifies this message is issued if the VERBOSE level of tracing has

been enabled.
v CONSMSG - Specifies this is an MVS console message.
v LOGONLY - Species this is a message that accompanies an MVS console

message, but is issued only to E/AS output.
v IP - Specifies this message is issued if IP tracing has been enabled.

Chapter 8. Customizing the Event/Automation Service 121

An example of an E/AS output entry follows:
-----date/time-------- module line
| | | | |
Fri Feb 20 10:45:55 2011 IHSAEASO:2016

msgtype ->specific data
| |
CONSMSG: IHS0075I Event/AutomationService started

Subtask initialization is in progress for IHSATEC

In this example, the console message IHS0075I was issued from the reported E/AS
module at the specified time and date.

Note: Module and line numbers are for use by a Tivoli service representative if
additional problem determination is needed.

Customizing Alert and Message Routing from the NetView
program

When the NetView program is installed, the routing of alert and message data to
the Event/Automation Service is by default disabled. NetView automation table
statements and hardware monitor filter commands are used to enable the routing
of alert and message data to the Event/Automation Service. See the IBM Tivoli
NetView for z/OS Automation Guide for complete information about enabling and
customizing the routing of alerts and messages from the NetView program to the
E/AS.

Running More Than One Event/Automation Service
Multiple E/AS address spaces can be active at the same time. In most cases, you
only need one E/AS; however, you might need more than one for any of the
following reasons. You want:
v A subset of alerts or messages to be translated and sent to a different event

server.
v Alerts or messages to be translated and sent to more than one event server.
v A subset of EIF events to be translated and sent to a different NetView alert

receiver.
v EIF events to be translated and sent to more than one NetView alert receiver.

If you run more than one E/AS, the E/AS PPI mailbox name must be unique for
each. All other configurable settings can be shared between the E/AS invocations.
However, you should consider changing the following configurable settings
between each E/AS invocation:
v If you use more than one event receiver service, only one should register with

the PortMapper. Others should specify a port number and disable the use of
PortMapper. If more than one event receiver attempts to use the PortMapper,
only the last event receiver to access PortMapper is actually registered; all other
registrations for the other event receivers are lost. A warning message is written
to the MVS system console when the event receiver PortMapper registration is
overwritten.

v The E/AS output log files should be unique for each E/AS invocation.
Otherwise, data from one E/AS are interleaved in the same output log file as
data from another E/AS. If you are using the IHSAEVNT startup procedure to
execute the E/AS, and the output log files are to SYSOUT data sets, then these
data sets are automatically unique for each E/AS invocation.

122 Customization Guide

Advanced Customization - Translating Data
In addition to the configuration files that the E/AS uses to define operational
characteristics, each E/AS service uses a translation file that contains a set of rules
that tell the service how to translate the incoming data into an EIF event or an
SNMP trap. Each translation file is a text-readable file that can be customized.

The translation files used by the services of the E/AS have two different formats.
The alert adapter, confirmed alert adapter, alert-to-trap, trap-to-alert and event
receiver services use a class definition statement (CDS) translation file. The
message adapter service and confirmed message adapter service uses a message
format translation file.

To customize these translation files, you should have an understanding of the
format of EIF events, SNMP traps, or both.

For additional information about SNMP traps, see the appropriate z/OS
documentation for SNMP agent.

Class Definition Statement Files
The class definition statement (CDS) file defines how to construct EIF events from
the information that is sent by a data source. For the alert adapter service,
confirmed alert adapter service, and the alert-to-trap service, the data source is the
NetView program. For the event receiver service, the data source is an event
server. For the trap-to-alert service, the data source is an SNMP trap manager. The
statements in this file are referred to as class definition statements. Class definition
statements are rules that enable the service to map the incoming data that it
receives to a console event.

Note: The event receiver service, alert-to-trap service, and trap-to-alert service
further processes the EIF event that is produced using these class definition
statements to turn it into an alert or SNMP trap. See “Event Receiver Post-CDS
Processing” on page 141 for more information about creating alerts from event
servers. See “Alert-to-Trap Post-CDS Processing” on page 165 for more information
about creating traps from alerts. See “Trap-to-Alert Post-CDS Processing” on page
158 for more information about creating alerts from SNMP traps.

A CDS file is composed of one or more CDS's. Each CDS can include a SELECT,
FETCH and a MAP segment that specifies the rules for mapping data into an EIF
event. These rules allow for selecting an event class based on the incoming data,
fetching additional data for creating the console event, and mapping the
information collected from the incoming event into event attributes for the
outgoing EIF event.

A CDS has this general format:
CLASS <class_name> SELECT <select_statements> FETCH <fetch_statements>

MAP <map_statements> END

The CDS file also supports comment lines beginning with the comment sign (#).

The keywords in a CDS provide the following kinds of information:

CLASS
The <class_name> defines the class name that will be used on the outgoing
console event if the incoming data matches this CDS.

Chapter 8. Customizing the Event/Automation Service 123

SELECT
Consists of one or more <select_statement> entries that incoming data must
satisfy to match, or select, this CDS. Select statements are evaluated in the
order that they appear in the SELECT segment. If all of the
<select_statements> of a particular CDS are satisfied, then the incoming data
matches the corresponding CDS. Otherwise, the adapter tries to match the
incoming data with the next CDS. If the incoming data cannot be matched
with any CDS, it is discarded.

FETCH
Consists of zero or more <fetch_statement> entries that are used to retrieve
additional pieces of data from the incoming data in order to build the
event attributes in the map segment. The FETCH segment is used to
retrieve data not retrieved by the SELECT segment, or to change the data
that was retrieved by the SELECT segment.

MAP Consists of zero or more <map_statement> entries that specify how to build
the event attributes of the EIF event instance using the service's default
data, user-defined constant data and pieces of data retrieved in the
SELECT and FETCH segments.

For the alert adapter service, each class of event defined in the .baroc file of the
service on an event server must match one or more CDS in the CDS file. The CDSs
specify how to map incoming data to the class and event attributes of the outgoing
EIF event instance. If you change or add classes or event attributes in the CDS file,
you must make a corresponding change to the .baroc file on the event server.

For the event receiver service, the outgoing EIF event is never sent to an event
server; it is a pseudo-event that is processed further to create an alert. Therefore,
there is no corresponding .baroc file on an event server for any EIF events created
from the event receiver's CDS file.

Each CDS is evaluated in the order it appears in the CDS file. An incoming event
is mapped to the class specified by the first CDS whose SELECT segment is
evaluated successfully. When more than one CDS is provided for a given class of
event, the CDS with the most restrictive SELECT segment should appear first in
the CDS file.

If the <class_name> is equal to *DISCARD*, any incoming data matching the
SELECT segment should be discarded. Note that data will also be discarded if it
does not match any CDS. However, if a given type of incoming data must always
be discarded, it is more efficient to define a *DISCARD* statement and put it at
the beginning of the CDS file rather than letting the adapter evaluate all CDS's
before finally discarding the event.

Encoding Incoming Event Data
Incoming event data is encoded by the service into name/value pairs. Name/value
pairs are also referred to as attributes. For any incoming event, all of the attributes
are placed in a list that is then used in the SELECT, FETCH and MAP segments.
The service selects which, if not all, of the incoming data to encode into
name/value pairs, see the specific service encoding discussion later in this section.

The name part of the attribute is a text string. There are two types of names -
generic and keyword.

124 Customization Guide

Generic names are text strings created by the services. A service may create these
names internally, or it may create them from information provided in the incoming
raw data; in either case, the method used by the service to create attribute names
will be discussed with the specific service encoding later in this chapter.

Keywords have the format $keyword. Data that is commonly provided in the
incoming datastream to the service is usually coded into keywords rather than
generic names. The actual keyword name is never derived from the incoming data,
but rather is defined by the service.

The main difference between keywords and generic names is how the names are
used in processing the CDS file. Keywords provide faster data lookup during CDS
file processing. Otherwise, keywords and generic names are nothing more than
data tags, with keywords prefaced with $.

The value part of the attribute is also a text string. Again, the service will assign
this text string based on data in the raw event.

Alert Adapter Service, Confirmed Alert Adapter Service, and
Alert-to-Trap Service Data Encoding

The alert adapter, confirmed alert adapter, and alert-to-trap service uses keyword
attributes exclusively for their data encoding. The following table lists each of the
keyword attribute names used and how the value field is assigned from the
incoming alert data.

Attribute name Description

$ALERT_CDPT A 2-byte hexadecimal value taken from the
alert description code field of the generic
alert data subvector, or the resolution
description code field of the resolution data
subvector.

$ORIGIN A character string with the name/type
hierarchy pairs from the Hierarchy Name
List or Hierarchy/Resource List subvectors.
The string contains the hierarchy in the
form:

resnam1/typ1,resnam2/typ2,resnam3/typ3,
resnam4/typ4,resnam5/typ5

Only the number of pairs in the actual
subvector are used.

$SUB_ORIGIN A character string with the last pair in the
name/type hierarchy pair list from the
Hierarchy Name List or Hierarchy/Resource
List subvectors. The string is in the form:

resnamx/typx

where x is the number of the last pair in the
list.

$HOSTNAME The netid.nau node name of the SNA node
where the alert originated. This could be a
NetView/390 node, an AS/400 node, etc.

$ADAPTER_HOST The IP name of the host where the NetView
alert adapter or confirmed alert adapter
resides.

Chapter 8. Customizing the Event/Automation Service 125

Attribute name Description

$DATE The date when the alert was received by the
NetView alert adapter or confirmed alert
adapter. In format: MMM HH:MM:SS, e.g. OCT 10
12:08:30.

$SEVERITY FATAL, CRITICAL, etc. The alert type field
from the Generic Alert Data subvector, or
the event type, is used to determine the
severity. Refer to Table 16 on page 127.

$MSG The Long Error Description:Long Probable
Cause message that describes the problem.
This message is similar to the ALERT
DESCRIPTION:PROBABLE CAUSE message
displayed on the NPDA ALERTS-DYNAMIC
panel.

$ADAPTER_HOST_SNANODE The netid.domainid node name of the
NetView system that sent the alert to the
NetView alert adapter or confirmed alert
adapter.

$EVENT_TYPE For example, PERMANENT, or
TEMPORARY. For Generic Alerts, it is
obtained by inspecting the Alert Type byte
of Generic Alert Data subvector. It matches
the EVENT TYPE displayed on the NPDA
EVENT DETAIL panel.

$ARCH_TYPE GENERIC_ALERT,
GENERIC_RESOLUTION, or
NONGENERIC_ALERT. NMVT Alert Major
Vectors contain a Generic Alert Data
subvector are GENERIC_ALERTs. NMVT
Resolution Major Vectors are
GENERIC_RESOLUTIONs. All other alerts
are NONGENERIC_ALERTs.

$PRODUCT_ID The hardware or software product set
identifier (PSID) of the alert or event sender.
This can be 4, 5, 7, or 9 characters. Pertains
to all generic alerts and some non-generic
alerts.

$ALERT_ID An 8-character hexadecimal value assigned
by the sender to designate an individual
alert condition. The value will always be
00000000 for resolution alerts. Pertains only
to generic alerts (including resolutions).

$BLOCK_ID The code used to identify the IBM hardware
or software associated with the alert. See the
NetView Resource Alerts Reference manual.
Pertains only to non-generic alerts.

$ACTION_CODE A code that provides an index to predefined
screens. Pertains only to non-generic alerts.
For non-generic alerts, the combination of
the block id and action code uniquely
identify the sending product.

$SELF_DEF_MSG Text extracted from Self-defining Text
Message Sv31.

126 Customization Guide

Attribute name Description

$EVENT_CORREL Correlators extracted from MSU Correlation
Sv47. These correlators correlate alerts to
other alerts. That is, you may have two or
more alerts that pertain to the same
underlying problem and such alerts are
correlated by Sv47. The tecad_snaevent.rls
file on the event manager server contains
rules that discard alerts that have already
been reported.

$INCIDENT_CORREL Correlators extracted from Incident
Identification subvectors. These correlators
correlate alerts to resolutions. The
tecad_snaevent.rls file on the event manager
server contains rules that CLOSE all
correlated alerts when a resolution is
received.

$ADAPTER_CORREL A correlator that has meaning only to the
alert adapter.

$DETAILED_DATA Always assigned the string "[N/A]".

$CAUSES Always assigned the string "[N/A]".

$ACTIONS Always assigned the string "[N/A]".

Non-keyword attributes can also be assigned by users in the NetView address
space. Refer to IBM Tivoli NetView for z/OS Automation Guide for more information
about how to customize alerts forwarded from the NetView program. Using this
method, any attribute name/value pair can be created and used by the CDS file
process. The alert adapter and trap-to-alert service do not use generic attributes
other than when they are assigned within the NetView program.

The value for the severity event attribute is determined by mapping an alert type
(or event type) to a severity. The following table shows this mapping. The
hexadecimal byte is the alert type field from the generic alert data subvector.

Table 16. Alert Types and Severities

Alert Type Severity

0x01, PERMANENT CRITICAL

0x02, TEMPORARY HARMLESS

0x03, PERFORMANCE WARNING

0x04, INTERVENTION REQ'D CRITICAL

0xNN, CUSTOMER APPLICATION MINOR

0xNN, END USER GENERATED MINOR

0xNN, SUMMARY HARMLESS

0xNN, INTENSIVE MODE REC HARMLESS

0x09, AVAILABILITY CRITICAL

0x0A, NOTIFICATION WARNING

0x0B, ENVIRONMENT CRITICAL

0x0C, INSTALLATION WARNING

0x0D, OPERATION/PROCEDURE WARNING

Chapter 8. Customizing the Event/Automation Service 127

Table 16. Alert Types and Severities (continued)

Alert Type Severity

0x0E, SECURITY CRITICAL

0x0F, DELAYED RECOVERED WARNING

0x10, PERMANENT AFFECTED MINOR

0x11, IMPENDING PROBLEM WARNING

0x12, UNKNOWN UNKNOWN

0xNN, HELD MINOR

0x14, BYPASSED WARNING

0x15, REDUNDANCY LOST WARNING

0x16, SITUATION WARNING

0xNN, RESENT ALERT MINOR

0xNN, RESOLVED PROBLEM HARMLESS

0xNN, UNSUPPORTED TYPE UNKNOWN

Alert-to-Trap Service Data Encoding
The alert-to-trap service constructs enterprise traps (type 6). The CDS file enables
customization of the specific code field in the trap. This is done by supplying a
value for the SPECIFIC keyword in the MAP sections of the CDS file.

The basic approach of the alert-to-trap service is to construct EIF event
keyword/value pairs from the alert and then map the keyword/value pairs (other
than SPECIFIC) into SNMP OCTET strings to be included as variable bind data in
the resulting trap. Both the keyword and the value are included in the resulting
OCTET string.

The alert-to-trap service has access to the alert-adapters keyword attributes, and
these can be used in SELECT, MAP and FETCH statements. However, not all alert
adapter attributes are applicable to SNMP traps.

The CLASS names in class definition statements are not used in the traps built by
the alert-to-trap servicer. However, the CLASS name is still required to satisfy CDS
syntax rules, and it is useful when you document the trap you are constructing.

Trap-to-Alert Service Data Encoding
The trap-to-alert service receives an SNMP trap as its incoming data. This data is
encoded into both keyword attributes and generic attributes.

The following table lists the keyword attributes created by the trap-to-alert service.

Attribute name Description

$ORIGIN_ADDR The value is a string containing the IP
address from which the trap came. Note that
when the sample datagram forwarding
daemon is used, the value is the IP address
of the host in which the daemon is running.

128 Customization Guide

Attribute name Description

$ORIGIN_PORT The value is a string containing the number
of the port (in decimal) at the origin address
from which the trap came. Note that when
the sample datagram forwarding daemon is
used, the value is the number of the port
over which the daemon forwarded the trap.

$SNMP_VERSION The value is a string containing the number
(in decimal) indicating which SNMP version
was implemented at the agent that sent the
trap. This determines how the trap was
formatted. The value for SNMPv1 is "0".

The following table lists the generic attributes created by the trap-to-alert service
from the SNMP trap data that is not a variable binding. All data is converted to a
character string before assigning it to the generic attribute name.

Attribute name Description

community The value of the SNMP trap community
field.

enterpriseOID The value of the SNMP trap enterpriseOID
field.

agent_address The value of the SNMP trap agent address
field.

generic_trap The value of the SNMP trap generic trap
field.

specific_trap The value of the SNMP trap-specific trap
field.

timestamp The value of the SNMP trap timestamp field.

The variable binding data is created directly from the variable binding data. The
variable binding name becomes the name of the generic attribute, and the variable
binding data is converted to a character string if it is not already a character string
and assigned to the generic attribute. When more than one variable binding within
an SNMP trap contains the same name, the name and index are appended to the
name to create the generic attribute name. For example, if the variable binding
name
1.3.6.1.4.1.2.2.1.3.1.0

occurred 3 times within the same SNMP trap, the generic attribute names that are
created as a result would be as follows:
1.3.6.1.4.1.2.2.1.3.1.0
1.3.6.1.4.1.2.2.1.3.1.0<1>
1.3.6.1.4.1.2.2.1.3.1.0<2>

Event Receiver Service Data Encoding
The event receiver service receives an EIF event as incoming data. This data is
encoded into both keyword attributes and generic attributes. This encoding is very
straightforward since the data is already in the name/value form of an attribute.
Every event attribute name in the incoming console event becomes the name of a
generic attribute in the attribute list, and the corresponding event attribute value
becomes the value of the attribute. The className of the event is encoded as the

Chapter 8. Customizing the Event/Automation Service 129

value of the $CLASSNAME keyword attribute. As such, the event receiver creates
one keyword attribute, $CLASSNAME, and as many generic attributes as there are
event attribute/value pairs in the incoming console event.

SELECT Segment of a Class Definition Statement
The SELECT segment of a CDS is composed of one or more <select_statement>
entries. Each <select_statement> entry has the following format:

<n>: ATTR(<a_op>, <a_op_value>),
VALUE(<v_op>, <v_op_value>);

A <select_statement> is satisfied if an attribute is found in the list of attributes
provided by the service that fulfills the conditions specified by the ATTR and
VALUE expressions of the <select_statement>. An attribute must be found for each
<select_statement> for the SELECT segment to be satisfied. If a SELECT segment is
not satisfied, the entire CDS is ignored and processing continues with the next
CDS in the CDS file.

<n> Is the identification number of the <select_statement>. n can be any valid
integer. Each <select_statement> must have a unique identification number;
this identification number is used in further processing of the CDS.

ATTR
Specifies the name of an attribute, in <a_op_value> and a modifying
condition on the attribute name in <a_op>. The ATTR expression is
mandatory in the SELECT statement. The list of attributes created by the
service from the incoming data are searched until an attribute is found that
has a name field which matches the condition expressed by the ATTR
expression.

<a_op>
Modifies the ATTR name and can have one of the following values:

= Specifies that the attribute name in <a_op_value> must match the
name of an attribute in the attribute list.

PREFIX
Specifies that the attribute name in <a_op_value> must be a prefix
of the name of an attribute in the attribute list.

SUFFIX
Specifies that the attribute name in <a_op_value> must be a suffix
of the name of an attribute in the attribute list.

<a_op_value>
Specifies the name of an attribute. The attribute list is searched sequentially
and the ATTR <a_op> expression is applied to each attribute name field
until a matching attribute is found.

By default, <a_op_value> is a string. However, <a_op_value> can also be a
variable. Variables are described in the list that follows.

When specified as a string, <a_op_value> must be enclosed in double
quotes (") if the string contains a blank character or if it is all digits (0
through 9). The following examples show possible <a_op_value> strings:
hello
$ORIGIN
"hello, world"
"12"

130 Customization Guide

When specified as a variable, <a_op_value> can contain any of these types
of variables:

Keyword
A keyword provided by the event adapter, for example, $ORIGIN.

Name Name variables are assigned the value of the name field of an
attribute that has satisfied a previous <select_statement>ATTR
expression. A name variable is specified as $Nn, where n is the
number of the <select_statement> that the desired attribute satisfied
(for example, $N2).

Value Value variables are assigned the value of the value field of an
attribute that has satisfied a previous <select_statement> VALUE
expression. A value variable is specified as $Vn, where n is the
number of the <select_statement> that the desired attribute satisfied
(for example, $V5).

The following example of an ATTR expression looks for a generic name that is
equal to user1. If the service has provided an attribute named user1, the ATTR
expression will be satisfied.
ATTR(=,"user1")

The following example of an ATTR expression looks for a keyword that is equal to
$ORIGIN. If the service has provided an attribute named $ORIGIN, the ATTR
expression will be satisfied.
ATTR(=,$ORIGIN)

VALUE
This expression is optional. For the attribute in the attribute list that
matches the associated ATTR expression, the value of the attribute is
subjected to a match based on the information in the VALUE expression.

<v_op>
Modifies the VALUE expression and can have one of the following values:

= Specifies that the VALUE expression in <v_op_value> must match
the value of an attribute in the attribute list.

PREFIX
Specifies that the VALUE expression in <v_op_value> must be a
prefix of the value of an attribute in the attribute list.

SUFFIX
Specifies that the VALUE expression in <v_op_value> must be a
suffix of the value of an attribute in the attribute list.

!= Specifies that the VALUE expression in <v_op_value> must not be
equal to the value of an attribute in the attribute list.

<v_op_value>
Specifies the value of an attribute. By default, <v_op_value> is a string.
However, <v_op_value> can also be a variable.

When specified as a string, <v_op_value> must be enclosed in double
quotation marks (") if the string contains a blank character or if it is all
digits (0 through 9). The following examples show possible <v_op_value>
strings:

Chapter 8. Customizing the Event/Automation Service 131

hello
$ORIGIN
"hello, world"
"12"

When specified as a variable, <v_op_value> can contain any of these types
of variables:

Keyword
The keyword is assigned a constant value (either a string or a
number), and the keyword can be used to reference the value.

Name Name variables are assigned the value of the name field of an
attribute that has satisfied a previous <select_statement> ATTR
expression. A name variable is specified as $Nn, where n is the
number of the <select_statement> that the desired attribute satisfied
(for example, $N2).

Value Value variables are assigned the value of the value field for an
attribute that has satisfied a previous <select_statement> VALUE
expression. A value variable is specified as $Vn, where n is the
number of the <select_statement> that the desired attribute satisfied
(for example, $V5).

The following example of a VALUE expression looks for an attribute with a value
that is prefixed with Serial:
VALUE(PREFIX,"Serial")

A valid match for this VALUE expression is Serial1.

SELECT Segment Evaluation:

1. For an entire SELECT segment to be matched, an attribute must be matched for
each of the <select_statement> expressions in that SELECT segment. More than
one attribute in the attribute list may satisfy a <select_statement>. The first one
in the attribute list that satisfies the statement is used for further CDS
processing.

2. If the SELECT segment is satisfied, the class name of the SELECT segment is
used for the outgoing EIF event. Processing of the event continues with the
FETCH segment, unless the class is *DISCARD*, in which case the event is
discarded. If the incoming data satisfies no SELECT segment of a CDS in the
CDS file, the incoming data is discarded.

3. Each time a <select_statement> is evaluated successfully, the two variables $Nn
and $Vn are created. These variables, along with the adapter-provided
keywords, can be used in any subsequent SELECT, FETCH, or MAP segment.

FETCH Segment of a Class Definition Statement
The SELECT segment of a CDS retrieves attribute names and values from the
incoming data, but it does not allow for changes to the selected pieces of
information. In some circumstances, it is necessary to extract a substring out of an
attribute value or to provide user-defined variables. The FETCH segment in a CDS
allows you to do this.

The FETCH segment is composed of one or more <fetch_statement> expressions.
Each <fetch_statement> has the following format:
<n>: <expression>

132 Customization Guide

where

<n> Is an identification number of the <fetch_statement>. <n> can be any valid
integer. Each <fetch_statement> must have a unique identification number.
A <fetch_statement> results in the value of <expression> being assigned to a
new variable, $Fn, where n is the identification number of the
<fetch_statement>.

<expression>
Is one of the following:
v A string
v Any output value from the SELECT segment (such as adapter-provided

keywords and SELECT segment variables.
v Any output from a previous <fetch_statement>
v A substring with any combination of strings, SELECT segment output,

and <fetch_statement> output.

An example of a FETCH segment using substrings is:
1: SUBST ($V2, 1, 5);

This statement uses the value of the variable $V2, as assigned from
<select_statement> number 2, and assigns the substring represented by the first 4
characters of $V2 to the variable $F1.

The output of the FETCH segment is the set of fetch variables $Fn.

MAP Segment of a Class Definition Statement
The MAP segment of a CDS creates the event attributes and associated values that
are put in the outgoing EIF event.

The MAP segment is composed of one or more <map_statement> expressions. Each
<map_statement> has one of the following formats:
<slot name> = <string>;
<slot name> = <variable>;
<slot name> = PRINTF(<format_string>, <var1>, ..., <varn>);

<slot_name>
The name of any event attribute. For the alert adapter service, this should
be an event attribute that corresponds to an event attribute in the service's
.baroc file on an event server. For the event receiver service, this should be
an event attribute that is allowed by the event receivers post-CDS file
processing.

<string>
Any character string.

<variable>
Any variable passed to the MAP segment from the SELECT or FETCH
segments, such as adapter-defined keywords or segment variables.

PRINTF
Specifies a format that allows the value of the event attribute to be
formatted using a C-style printf() format string. This format string
currently supports only the %s format specifier.

<var> Can contain either a <string> or a <variable>.

Here is an example of a MAP segment:

Chapter 8. Customizing the Event/Automation Service 133

MAP
origin = $V2;
hostname = $HOSTNAME;
msg = PRINTF("The origin is %s", $V2);

In this example, the origin event attribute would be given the value of the SELECT
segment variable $V2. The hostname event attribute would be given the value of
the $HOSTNAME keyword. Assuming the value of the variable $V2 is
NV390SP/SP, the msg event attribute would be given the value "The origin is
NV390SP/SP" (the double quotes are not included in the value).

The output of the map process is a list of event attribute name/value pairs that are
used to generate the outgoing EIF event that is either sent to the event server or
used for post CDS-file processing.

MAP_DEFAULT Section of the Class Definition Statement Files
Some event attributes, like source and hostname, will probably have a constant
value for all the EIF events generated by a given service. To avoid repeating
identical map statements in many CDS's, the CDS file supports a MAP_DEFAULT
section. This section defines event attribute name/value pairs for all CDS's in the
CDS file. The event attributes that are defined in this global definition section can
be overridden by specific definitions in a CDS.

Here is an example of a MAP_DEFAULT section:
MAP_DEFAULT

origin = $ORIGIN;
sub_origin = $SUB_ORIGIN;
msg = $MSG;

END

In some cases, you may want to put CDSs into more than one CDS file and have
them all be used by a service. To enable this, an extension to normal CDS file
processing has been added for the E/AS services. The %INCLUDE statement
allows additional CDS files to be embedded within the current CDS file. The
%INCLUDE keyword cannot be preceded by blank characters, and it must be
followed by a separator of one blank character. Following the separator is the file
name of the CDS file to be opened. This file name is either a 1 to 8 character PDS
member name that is associated with the IHSSMP3 data set definition, or a
complete file name that is preceded by the backslash ('\') character. The maximum
number of CDS file members that can be opened at the same time is 20; this
represents the maximum number of nested %INCLUDE statements that are valid.

The following example shows the %INCLUDE statement syntax. Assume that the
file named IHSAACD1 contains the single statement:
sub_origin = $SUB_ORIGIN;

In this example:
MAP_DEFAULT //Statements from IHSAACDS

source = NV390ALT;
origin = $ORIGIN;

%INCLUDE IHSAACD1 //New file with sub_origin statement
hostname = $HOSTNAME; //Continuation of IHSAACDS
adapter_host = $ADAPTER_HOST;

END

134 Customization Guide

For an example of using CDS's, see the IHSAACDS, IHSABCDS, or IHSAECDS
sample that is shipped with the Event/Automation Service. These are the default
translation files used for the alert adapter, confirmed alert adapter, and event
receiver services, respectively.

Message Format Files
The FMT file defines how the message adapter service and the confirmed message
adapter service construct EIF events from message information that is sent by the
NetView program. The statements in this file are referred to as format specification
statements (FSS). Format specification statements are rules that allow a service to
map the incoming message data that it collects from the NetView program to an
outgoing console event.

The following sections describe the syntax of the message and confirmed message
adapter service format specifications and how format specifications are mapped
into events.

Encoding Incoming Event Data
For the message adapter service and the confirmed message adapter service, the
incoming data is a message string. This message text string is matched against
format specifications in the FMT file. The primary piece of information, therefore,
is the message string itself.

Like a CDS file, the job of the FMT file is to allow the user to customize the
outgoing console event based on the incoming message data. This method does not
encode the data into attributes; however, there are certain event attribute names
that receive default information from the incoming message data.

The following table lists each of the default event attribute names and their
corresponding default values. If the value for the event attribute is not actually
present in the incoming data, then the default event attribute value will be the null
string. ANY event attribute that is listed in the map rules portion of a format
specification statement has a default value; if it is not provided in the incoming
data, its default value is the null string ("").

Event attribute name Description

origin The netid.domainid node name of the
NetView system where the message
originated.

sub_origin The job number associated with the
message. If a job number is not available for
the message, the value defaults to a null
string ("").

hostname Same as the origin event attribute.

adapter_host The IP name of the host where the
Event/Automation Service is running.

date The date and time that the message was sent
from the NetView automation table. In
format: MMM HH:MM:SS, e.g. OCT 10 12:08:30.

msg_id The first token of the message. In most
cases, this token is the actual message
identifier.

Chapter 8. Customizing the Event/Automation Service 135

Event attribute name Description

severity Inferred from the last character of the
msg_id. The translation of this character to a
value for this event attribute is:

A, E, S CRITICAL
T FATAL
anything else WARNING

msg The message text, which includes msg_id as
the first token.

adapter_host_snanode The netid.domainid node name of the
NetView system that sent the message to the
message adapter service or the confirmed
message adapter service.

multiline_msg The second and succeeding message lines
from the message. If the message is
contained in one line, the value of
multiline_msg is N/A.

jobname The jobname associated with the message. If
a jobname is not available for the message,
the value of jobname defaults to a null
string ("").

Default event attributes and values can also be assigned by users in the NetView
address space. Refer to the IBM Tivoli NetView for z/OS Automation Guide for more
information about customizing messages forwarded from the NetView program.
Using this method, any attribute name/value pair can be created and used by the
FMT file process.

Format Specifications
The FMT file is made up of 1 or more FSS. An FSS has the following three parts:
v The format header has the keyword FORMAT followed by the class name. This

is optionally followed by the FOLLOWS keyword and a previously defined
FORMAT class name. If the incoming message matches this FSS, the class name
following the FORMAT keyword is used on the outgoing EIF event.

v The format content has a format string optionally followed by a list of map
rules. The format string performs a function similar to the SELECT segment of a
CDS file; that is, it matches the incoming message to a particular FSS. The map
rules perform a function similar to the MAP segment in the CDS file; that is,
they assign values to event attributes.

v The END keyword completes the FSS.

The format header, the format string, each map rule, and the END keyword must
begin on a new line.

The FOLLOWS relationship is used to enable a specific FSS to be built from more
generic ones. When format B follows format A, B inherits all of the map rules (but
not the format string) from A. Format B can define any additional map rules, but
any map rules redefined by B are not inherited from A. Format B can override
inherited map rules by redefining them.

Messages that are forwarded by the NetView program typically have a common
format consisting of a message identifier and message-specific text. These message
components can be represented in the format string using a component specifier

136 Customization Guide

notation that is very similar to the C-style printf() notation. This printf() notation
is similar to the notation used in CDS files.

The following format string describes the entire class of messages that are
produced by the NetView automation table:
%s*

Input messages are tokenized into constants and blanks. A constant is any
consecutive string of non-blank characters. Component specifiers allow the
constants and blanks to be grouped into more complex "tokens" when trying to
match an FSS against a specific message. The current allowable component
specifiers are:
%lengths Matches one constant in the input message
%lengths* Matches zero or more constants in the input message
%lengths+ Matches one or more constants in the input message

The optional length is a decimal number of any size that truncates the constant if
the actual length is greater than the specifier length. For the specifiers that can
match multiple constants, each constant in the accumulated string is truncated.
Also, the string itself terminates on a constant that is less than the specifier length.

The format string DSI%s %s* is taken from the default message adapter FMT file
shipped with the E/AS, and is used in the following discussion to demonstrate the
usage of format strings.

As an example of matching a message to the DSI%s %s* format specification,
consider the following NetView message:
DSI002I INVALID COMMAND: ’BADCOMMAND’

The component specifiers and matches are as follows:
DSI DSI
%s 002I
%s* INVALID COMMAND:’BADCOMMAND’

The DSI002I message has some constant parts and some variable parts. That is,
certain parts of the message (constant parts) will be the same for any DSI002I
message that is generated. The constant parts of the message are:
DSI002I INVALID COMMAND: ’ ’

The variable part of the message is:
BADCOMMAND

Note that the first constant part of the message goes all the way to the first single
quote (') in the message. The second single quote is the beginning of the second
constant part of the message, which also happens to be the last character in the
message. The data inside of the single quotes is all variable.

The following message is an example of another DSI002I message with different
variable parts:
DSI002I INVALID COMMAND: ’WORSE COMMAND’

In this case, the variable part is composed of two words and a space -- WORSE
COMMAND.

Chapter 8. Customizing the Event/Automation Service 137

The format string DSI%s %s* can be specialized for the DSI002I message as
follows:
DSI %s INVALID COMMAND: ’%s*’

Using the previously described DSI002I message, the component specifiers and
matches are as follows:
DSI DSI
%s 002I
INVALID COMMAND: ’INVALID COMMAND: ’
%s* WORSE COMMAND
’ ’

The blank characters that separate the words of a message must also be present in
the format string. A single space character in the format string will match any
number of blank characters in the message.

Suppose the space between the colon (:) and the quote (') is deleted in the
specialized DSI002I format string given previously:
DSI %s INVALID COMMAND:’%s*’

In this example, the format string would no longer match DSI002I messages.
However, in the following example, the NetView message would match the format
specification, since all consecutive blanks from both the input message and the
format specification are boiled down to a single blank character:
DSI %s INVALID COMMAND: ’%s*’

Care should be taken when using arbitrary length repeater component specifiers
(%s* and %s+). The following format string does not make much sense:
This is not a good format %s* %s*

The first %s* matches everything through the end of the message, and the second
%s* will never match anything. It might appear that this does not matter, but the
importance becomes obvious when map rules are discussed in “Map Rules.”

The following format string, however, is meaningful:
This is a good format %s* : %s*

The first %s* matches everything up to the first colon (:), and the second %s*
matches everything through the end of the message.

From the examples here, you can see that you can specialize a generic format to
match a more specific event by either replacing component specifiers with
constants or by restricting the arbitrary length repeater specifiers to a fixed length
by using constants to terminate the specifier.

Map Rules
The service translates incoming message data into an event class with event
attribute name/value pairs, and sends this information to an event server. As with
the alert adapter service, a .baroc file at the event server must be present to match
the outgoing EIF events created by the message adapter service. This is not
required for the confirmed message adapter service.

The event class is determined by matching an input message to an FSS as
described previously. However, once the class is determined. Values must be
assigned to the event attribute names. These values can come from a variety of

138 Customization Guide

places, such as from the message itself, from default event attributes provided by
the service, or from specifications within the FMT file. Map rules define how event
attributes are assigned values.

The map rule portion of the format string consists of zero or more lines that
contain a .baroc file event attribute name followed by a value specifier. The value
specifiers are one of four types:
v $i , where i indicates the position of a component specifier in a format string.

Each component specifier is numbered from 1 to the maximum number of
component specifiers in the format string. For example, in the specialized format
specification for the DSI002I message given previously, the %s* component
specifier would be referred to in the map rules as $2. The value of a $i value
specifier, also referred to as a variable value specifier, is the portion of the input
message that was consumed by the component specifier. These variables are
very similar to the variables output from the SELECT and FETCH segments in
the CDS file.

v A constant string. The value of the event attribute is the specified string. If the
string is a single constant, it can be specified without surrounding double quotes
("). Otherwise, double quotes must be used.

v A PRINTF statement. This mechanism allows you to compose more complex
event attributes from other event attributes. The PRINTF statement consists of
the keyword PRINTF followed by a C-style printf() format string and a list of
event attribute names. The printf() format string currently only supports the %s
conversion specifier. The values of the event attributes that are used in the
PRINTF statement must also have been derived from either the $i value
specification or a constant string value specification. They cannot be derived
from another PRINTF value specification. The value of the argument event
attributes will be used to compose a new constant string according to the
printf() format string. This constant string becomes the value of the event
attribute. This value specifier is very similar to the PRINTF MAP segment
format in the CDS file.

v DEFAULT. This keyword indicates that the adapter should use its internal logic
to derive the value of the indicated event attribute. For example, the incoming
message data contains the hostname (netid.nau) where the message originated. If
the hostname event attribute is therefore set to the value DEFAULT, netid.nau
will be the value of the hostname event attribute. This is similar to the use of
keywords in the alert adapter service.
If the incoming message does not provide a specific value for a slot, the
DEFAULT value is the null string (""). The DEFAULT value for non-specified slot
names can be overridden. An additional value specifier, delimited with a colon
(:), may follow the DEFAULT value specifier. This value specifier will be used to
provide the DEFAULT value of the slot only if a slot value is not provided in the
incoming message.
Only constant string and $i variable specifiers can be used to provide DEFAULT
overrides.
For example, the following assigns the slot numericslot with the DEFAULT value
from the incoming message:
numericslot DEFAULT : 0

If the incoming message does not contain a value for numericslot, a value of 0 is
assigned rather than a null string.
Note that because DEFAULT is a keyword, a constant map whose value is the
string DEFAULT must be specified in double quotes ("").

Chapter 8. Customizing the Event/Automation Service 139

You should specify only one map rule for each .baroc file event attribute in any
one format specification. The map rule can be inherited from a more generic
format specification (using the FOLLOWS keyword), or it can be explicitly defined
on the format specification that directly matches the input message. Since the
service does not have access to the .baroc file, which resides on the event server,
care must be taken to make sure that the format specifications agree with the
corresponding .baroc file definitions. If an event attribute name is misspelled in a
map rule, for example, the service will not report any error and will send the event
to the event server as usual. However, the event will be meaningless to the event
server.

There can be attributes in the incoming message that do not directly correspond to
any .baroc file event attributes. However, the service might need to use these
values to compose PRINTF style constant strings. This data needs to be assigned
to temporary event attributes, which can then be used in the PRINTF value
specification but does not allow the event attribute to be sent over to the event
server as an independent event attribute name/event attribute value pair.
Temporary event attributes are designated with a minus sign (-) immediately
preceding the event attribute name in the map rule. These temporary event
attributes are not .baroc file event attributes. Do not use the minus sign (-) when
referring to the temporary event attribute in the PRINTF specification.

%INCLUDE Statements
The %INCLUDE statement allows additional FMT files to be imbedded within the
current FMT file. The %INCLUDE keyword cannot be preceded by blank
characters, and it must be followed by a separator of one blank character.
Following the separator is the file name of the FMT file to be opened. This file
name is either a 1 to 8 character PDS member name that is associated with the
IHSSMP3 data set definition, or a complete file name that is preceded by the
backslash ('\') character. The maximum number of FMT file members that can be
opened at the same time is 20; this represents the maximum number of nested
%INCLUDE statements that are allowed.

Format File Example: The following sample is used to demonstrate the concepts
discussed previously; this example was taken (and modified somewhat) from the
message adapter services default message format file (IHSAMFMT):
FORMAT NV390MSG_Event
%s*
source NV390MSG
origin DEFAULT
desctext "This string will be overridden"
END
FORMAT NV390MSG_NetView_NCCF FOLLOWS NV390MSG_Event
DSI%s %s*
sub_source "NetView NCCF"
msgnumber $1
temp1 $2
desctext PRINTF("Got a DSI message: %s", temp1)
END

%INCLUDE MOREFMTS

Using this format file, assume that the following message is received by the
service:
DSI002I INVALID COMMAND: ’A BAD COMMAND’

This message matches the NV390MSG_NetView_NCCF format specification defined
previously IF the additional format statements include in MOREFMTS do not specify

140 Customization Guide

another format specification that this message can match on. Remember, matches
on the FSS in the FMT file begin with the last FSS in the file and progress toward
the first FSS until a match occurs.

With this match, the source event attribute will be assigned the string value
NV390MSG. The origin event attribute will be assigned whatever default the event
adapter associates with this event attribute. The desctext event attribute will be
assigned the string This string will be overridden initially. These event
attributes are all assigned with the more generic NV390MSG_Event FSS, from which
the NV390MSG_NetView_NCCF FSS follows.

The sub_source event attribute will be assigned the value of NetView NCCF. The
msgnumber event attribute will be assigned the value 002I (which was dissected
from the input message on the first %s* specification). The -temp1 temporary event
attribute will be assigned the string INVALID COMMAND: ’A BAD COMMAND’ (which
was dissected from the input message on the second %s* specification). This
temporary variable is then used with the PRINTF value specifier to override the
desctext event attribute with the string Got a DSI message: INVALID COMMAND: ’A
BAD COMMAND’.

All of the event attributes, with the exception of the -temp1 event attribute, will be
used to build the outgoing EIF event. The classname for the event will be
NV390MSG_NetView_NCCF , the name of the most specifically matched FSS.

For an example of using FSS, refer to the IHSAMFMT sample (message adapter
service or the IHSANFMT sample (confirmed message adapter service) that is
shipped with the Event/Automation Service.

Event Receiver Post-CDS Processing
For the alert adapter service, confirmed alert adapter service, message adapter
service, and confirmed message adapter service, translation files are used to
translate incoming service-specific data into an EIF event. For the event receiver, a
CDS file will be used to go in the opposite direction (translate an event into a
NetView alert).

To do this, the processing of the CDS file by the event receiver will be modified
slightly from the processing that is done on the file by the alert adapter service or
the confirmed alert adapter service. Syntactically, all of the information that is
discussed in “Class Definition Statement Files” on page 123 is still true for the
event receiver CDS file. The event receiver treats the event that is output by the
CDS file process as a pseudo event; that is, the event is not meant to be sent to an
event server, but rather is parsed for certain specific event attributes that are
encoded into the NMVT.

Input Attribute List
The incoming EIF event is encoded into an attribute list as described in the
service-specific encoding section later in this chapter. In addition to the
$CLASSNAME keyword created when the incoming event is parsed, there are
additional keywords created for the input attribute list by the event receiver. The
following list describes the additional keywords:

Chapter 8. Customizing the Event/Automation Service 141

Keyword Description Default

$NMVT_TYPE The type of the NMVT to be
created (alert or resolution).
This keyword is modified by
the NMVT_TYPE event
attribute. The NMVT_TYPE
event attribute can have a
value of ALERT or
RESOLVE.

ALERT

$CDS_GROUP This keyword contains
values in the set GROUP001,
GROUP002, ... GROUP999. The
value of the CONTINUE
event attribute is used to set
the value of this keyword.
For more information about
the $CDS_GROUP keyword
and the CONTINUE event
attribute, see “Matching
Multiple CDSs to Create the
Pseudo Event” on page 147.

GROUP001

$BUILD_SV31LIST Assigned the value of the
BUILD_SV31LIST event
attribute. This event attribute
can have a value of NO or
YES. When the alert is built,
the value of this keyword is
used to determine whether
subvector 31s are to be
added for each event
attribute/value pair in the
original EIF event. For more
information about the
$BUILD_SV31LIST keyword
and the BUILD_SV31LIST
event attribute, see “Building
the SV 31s Containing the
Original Event” on page 151.

YES

Output Pseudo Event
Like any EIF event, this pseudo event contains a class name, followed by event
attribute/value pairs. Note that because this event will never be sent to a console,
there is no .baroc file on any console server that corresponds to these events. In
general, a CDS file enables any event attribute/value pair and any class name to
be put into the pseudo event. Even though any class name and event
attribute/value pair can be placed in the pseudo event, the event receiver only
uses certain predefined event attribute names to translate the event into an alert.
Any other event attributes are ignored.

Pseudo Event Class name
The event receiver does not use the pseudo event class name for translating the
EIF event. All of the CDSs in the event receiver CDS file can have the same name;
however, for ease of organizing the various CDSs and debugging, it is
recommended that you use a different class name for each CDS in the CDS file.
The convention used in the sample CDS file shipped with the E/AS is to group the
CDSs that are associated with producing a particular subvector within the NMVT

142 Customization Guide

together and prefacing them with a common character string. The end of the class
name can then have some unique designation to make it unique.

An example:
CLASS SV05_1
...
END
CLASS SV05_2
...
END

CLASS SV05_3
...
END

...

In this example, the SELECT segments (not shown) in each CDS statement will
cause a different subvector 05 to be built. The class name for the SV 05 that is
eventually built will have a unique name that identifies it as an SV 05. Again, this
information is used only for visual organization and debugging.

NMVT_TYPE event attribute
You can specify the type of NMVT, whether it is an alert or a resolution, by coding
the NMVT_TYPE event attribute in the MAP segment of a CDS. There are two
valid values for this event attribute: RESOLVE and ALERT. The value of this
event attribute is copied to the $NMVT_TYPE keyword.

SV event attribute
This event attribute is the main vehicle for creating the subvectors that are to be
placed into the NMVT.

The event attribute name must be prefixed with SV; the rest of the event attribute
name can be any character string. SV05, SVAA and SVNONSENSE are all recognized as
SV event attributes. Again, for clarity and debugging, it is recommended that the
event attribute names contain the number of the subvector being created -- SV05,
SV92, SV05_1.

An SV event attribute value contains the full subvector (including the length and
subvector key). The values that are assigned to SV event attributes in the MAP
segment of a CDS are interpreted as character strings; the event receiver will
decode the numeric character string into the hexadecimal values that are to be
used in the alert. An example of a subvector event attribute from the sample CDS
file:
SV05 = "0B0509100004E3C5C30040";

The value in the SV05 is a character string with hexadecimal characters. The event
receiver translates this character string into true numeric format for inclusion in the
NMVT. The event receiver does not validate this subvector. The subvector that is
placed into the NMVT is similar to the following:
0B0509100004E3C5C30040

Following the general CDS file syntax, if the event attribute value contains only the
digits in the range of 0–9, the value must be enclosed within double quotations to
be interpreted as a string. The previous example has alphabetic characters
(representing the hexadecimal values A-F) in it, so it was not necessary to enclose

Chapter 8. Customizing the Event/Automation Service 143

the event attribute value within quotes. It is a good habit, though, to enclose SV
event attributes within double quotations.

Disabling Hexadecimal String Translation
In some cases, you may want to add a character string that is not a hexadecimal
value to the subvector string. As previously described, by default the event
receiver attempts to translate the event attribute value hexadecimal string into
numeric format under the assumption that the string is a sequence of hexadecimal
characters (0–9, A–F). In the previous example, the hexadecimal string E3C5C3 is,
in EBCDIC, TEC.

To specify the string TEC directly within the event attribute value, enclose the string
within <> braces. The braces must have escape characters preceding them; the
escape character is # . Using this convention, for example, the string is as follows:
SV05 = "0B0509100004#<TEC#>0040"

This event attribute value would produce exactly the same NMVT subvector as the
first example, as follows:
0B0509100004E3C5C30040

The braces indicate to the event receiver that the data enclosed within the braces is
not a hexadecimal string number that needs to be converted, but the string is to be
placed directly into the NMVT.

Using Attribute List Data in the Output Subvector
Event attributes can be assigned the value of a CDS variable ($V, $N, $F variables),
the value of a keyword, or generic attribute from the attribute list. When using
these variables, it is likely that the value of the variable should not be converted.
Also, it is likely that these variables do not contain the entire coded subvector
entirely within the variable. To handle this, the PRINTF style of MAP statement
assignment is useful.

Extending the SV 05 example introduced previously, assume that the string TEC is
the value of the $V2 variable generated by a SELECT segment. To produce an
identical SV 05 for the NMVT, enter the following:
SV05 = PRINTF("0B0509100004#<%s#>0040", $V2);

Using the PRINTF syntax, the %s format specifier is substituted with the value of
the $V2 variable, which is TEC. The escaped braces tell the event receiver not to
translate the TEC string into numeric format, and again the following subvector
produced is identical to that produced in the first two examples:
0B0509100004E3C5C30040

Any time you need to assign data that came from the original EIF event to the
output subvector, you will likely need to use the PRINTF syntax with string
translation disabled. However, it is possible that the incoming event has, as an
event attribute value, the string E3C5C3 instead of the string TEC. In this case, use
the following string to produce the desired NMVT subvector:
SV05 = PRINTF("0B0509100004%s0040", $V2);

If you continued to disable the hexadecimal string translation, your output
subvector is similar to the following:
0B0509100004C5F3C3F5C3F30040

144 Customization Guide

Each of the six characters E,3,C,5,C and 3 is left in their character state
(C5,F3,C3,F5,C3 and F3).

Automatic Subvector/Subfield Length Calculation
In the initial SV 05 example
SV05 = "0B0509100004E3C5C30040";

The length of the subvector was coded directly into the string. Because there is no
variable information in the subvector, the length is coded directly into the event
attribute value within the CDS MAP segment. The length of the subvector might
not be known when the CDS file is created if variable data is used.

Consider the following example that inserts attribute list data into the subvector:
SV05 = PRINTF("0B0509100004#<%s#>0040", $V2);

In this example, the value of the $V2 variable was TEC; therefore, it has a length of
3. This was used to calculate the total subvector length (0B), the subfield 10 length
(09), and the resource name length (04). In reality, the length of the value of the
$V2 variable will be unknown until the event arrives.

To enable the event receiver to calculate the length of a portion of the subvector
string, use curly braces {} around that portion of the string. The curly braces must
be escaped with the escape character #. The curly braces are removed from the
string when the length is calculated, but the opening curly brace is the place
holder in the subvector string for the length field.

Modify the previous example as follows:
SV05 = PRINTF("#{05#{1000#{#<%s#>#}0040#}#}", $V2);

Following is a step-by-step translation of this event attribute. The PRINTF
substitution is first as follows:
SV05 = "#{05#{1000#{TEC#}0040#}#}";

At this stage, the output subvector is similar to the following:
...E3C5C3...

Where the ellipsis represents all data yet to be translated into the subvector. Next,
the segment #{TEC#} is used to calculate the length of the resource name entry.

The output subvector is as follows:
...04E3C5C3...

The first #{ is replaced with the length of the segment, the matching #} is
removed. Next, the segment #{100004TEC0040#} is used to calculate the length of
the subfield 10 entry.

The output subvector is as follows:
...09100004E3C5C30040

Again, the #{ is replaced with the length of the segment, the matching #} is
removed. Finally, the segment #{05091000100004TEC0040#} is used to calculate the
length of the entire subvector 05.

The final output subvector is as follows:
0B0509100004E3C5C30040

Chapter 8. Customizing the Event/Automation Service 145

BUILD_SV31LIST Event Attribute
The entire original EIF event is, by default, coded into SV 31s and attached to the
NMVT. The class name, each event attribute/value pair, and the END designator
are coded into separate SV 31s. The BUILD_SV31LIST event attribute enables the
user to control whether this list of SV 31s is to be added to the NMVT. When the
pseudo event is completed, if a BUILD_SV31LIST event attribute is present in the
event AND has a value of NO, the SV 31 list is excluded. Otherwise, the SV 31 list
is included.

If any single slot/value pair is larger than what an SV 31 will allow, the slot/value
string is continued in additional SV 31s. The last character of a continued SV 31
will contain a + (plus sign) to indicate that it is continued into the next SV 31. The
+ (plus sign) must be in character position 255 of the SV 31 to signify continuation;
otherwise, the + (plus sign) is interpreted as part of the text message.

Multiple SV 31s will be created in order to continue a slot/value pair, if needed.
Each continued SV 31 will contain a + (plus sign) as the last character. The first
non-continued SV 31 represents the end of the slot/value pair.

CONTINUE Slot
This event attribute is used to enable the matching of multiple CDSs to create a
single pseudo event. A full description of this multiple pass process on the CDS
file is given in “Matching Multiple CDSs to Create the Pseudo Event” on page 147.
This event attribute can have a value of either NEXT or GROUPxxx, where xxx is
a value in the range of 000–999.

The value of this event attribute is used to update the value in the $CDS_GROUP
keyword. This keyword defaults to a value of GROUP001. If the value of a
CONTINUE event attribute is NEXT, $CDS_GROUP is updated by adding a 1 to
the three numeric digits at the end of the value. If the current value of
$CDS_GROUP is GROUP001, and a CONTINUE event attribute with a value of
NEXT is encountered in a MAP segment, the new value of the $CDS_GROUP
keyword will be GROUP001.

If the value of the CONTINUE event attribute is GROUPxxx, this value is used to
replace the $CDS_GROUP value only if the numeric digits in the event attribute
value are greater than the numeric digits in the current $CDS_GROUP value.

SF21 Slot
This event attribute is used to override the code point in any Subfield 21s that are
in the SV 31s used to send the original EIF event. The value of this event attribute
must be as follows:
attributeName=codepoint

Where attributename is the name of any generic attribute in the input attribute
list, and codepoint is a 2-digit hexadecimal string that defines the value to be
placed in the SF 21 that is associated with the SV31 for the named generic
attribute.

Like the SV event attribute, the SF21 must only be prefixed with the string SF21;
any characters after this prefix are ignored.

146 Customization Guide

Matching Multiple CDSs to Create the Pseudo Event
A major difference between the way that CDS files are processed by the event
adapters and how the CDS file is processed by the event receiver is the number of
CDSs that can be matched to produce a single EIF event (or pseudo event, in the
case of the event receiver).

One-Pass Method
The event adapters will run through all of the statements in a CDS file until either
one statement is matched or the end of the file is reached without a match. The
MAP segment of that single matching CDS is then used to create the event
attribute/value pairs that will go into the outgoing EIF event.

Although this same one-pass process can be used to create any of the pseudo
events that will be translated into an alert, it can result in a cumbersome CDS file.
To illustrate this, consider the following example.

From an incoming event, create an alert that has various combinations of SV 05s
and SV 92s based on event attribute/value pairs in the event. For the SV 05
creation, you look for the presence of two event attributes -- resource1 and
resource2. The following four CDSs map the SV 05:
CLASS SV05_1

SELECT
1: ATTR(=,resource1);
2: ATTR(=,resource2);

MAP
SV05 = PRINTF("#{05#{1000#{#<%s#>#}0084#{#<%s#>#}0040#}#}", $V1, $V2);

END

CLASS SV05_2
SELECT
1: ATTR(=,resource1);

MAP
SV05 = PRINTF("#{05#{1000#{#<%s#>#}0084#}#}", $V1);

END
CLASS SV05_3

SELECT
1: ATTR(=,resource2);

MAP
SV05 = PRINTF("#{05#{1000#{#<%s#>#}0040#}#}", $V1);

END

CLASS SV05_4
SELECT
1: ATTR(=,$CLASSNAME);

MAP
SV05 = "#{05#{1000#{#<NONE#>#}0084#}#}";

END

To produce the four different event attributes, different SELECT segments must be
used to inspect for the presence of these event attributes; therefore, there will be 4
different CDSs in the CDS file. Only one of these SV 05s will be in the pseudo
event. The last CDS uses the $CLASSNAME keyword as a default. This keyword
will always be present, so the last CDS will be selected if none of the other CDSs
are matched.

The SV 92 subvector depends on value of another event attribute, severity. There
are three different values for the severity event attribute that can result in
different SV 92s, and a fourth SV 92 that is created if the severity event attribute
contains none of these values. These CDSs are as follows:

Chapter 8. Customizing the Event/Automation Service 147

CLASS SV92_1
SELECT
1: ATTR(=,severity), VALUE(=,FATAL);

MAP
SV92 = "0B92010001FE0300000000"

END
CLASS SV92_2

SELECT
1: ATTR(=,severity), VALUE(=,WARNING);

MAP
SV92 = "0B92010011FE0300000000"

END

CLASS SV92_3
SELECT
1: ATTR(=,severity), VALUE(=,HARMLESS);

MAP
SV92 = "0B92010002FE0300000000"

END

CLASS SV92_4
SELECT
1: ATTR(=,$CLASSNAME);

MAP
SV92 = "0B92010012FE0300000000"

END

Again, this requires 4 different CDSs to produce one and only one of these 4
different event attributes.

To produce a single pseudo event that can have any combination of the previous
SV 05s and SV 92s using one pass through the CDS file requires 16 different CDS
statements. The multiplication of the 4 statements needed to produce a unique
SV05 and the 4 statements needed to produce a unique SV 92. Each of the 16 MAP
segments has a single SV 05 and SV 92, representing all of the combinations that
can occur. The four CDSs that represent both resources in combination with the
various SV 92s are:
CLASS SVBOTH_1

SELECT
1: ATTR(=,resource1);
2: ATTR(=,resource2);
3: ATTR(=,severity), VALUE(=,FATAL);

MAP
SV05 = PRINTF("#{05#{1000#{#<%s#>#}0084#{#<%s#>#}0040#}#}", $V1, $V2);
SV92 = "0B92010001FE0300000000"

END
CLASS SVBOTH_2

SELECT
1: ATTR(=,resource1);
2: ATTR(=,resource2);
3: ATTR(=,severity), VALUE(=,WARNING);

MAP
SV05 = PRINTF("#{05#{1000#{#<%s#>#}0084#{#<%s#>#}0040#}#}", $V1, $V2);
SV92 = "0B92010011FE0300000000"

END

CLASS SVBOTH_3
SELECT
1: ATTR(=,resource1);
2: ATTR(=,resource2);
3: ATTR(=,severity), VALUE(=,HARMLESS);

MAP
SV05 = PRINTF("#{05#{1000#{#<%s#>#}0084#{#<%s#>#}0040#}#}", $V1, $V2);
SV92 = "0B92010002FE0300000000"

END

148 Customization Guide

CLASS SVBOTH_4
SELECT
1: ATTR(=,resource1);
2: ATTR(=,resource2);

MAP
SV05 = PRINTF("#{05#{1000#{#<%s#>#}0084#{#<%s#>#}0040#}#}", $V1, $V2);
SV92 = "0B92010012FE0300000000"

END

When other subvectors that need to be placed in the same output NMVT are
added, the number of needed CDSs and the duplication of event attribute
mappings in the MAP segment grows considerably.

Multiple-Pass Method
To alleviate this problem, the event receiver makes multiple passes though the CDS
file and collects separate mappings from each segment that it matches for the one
pseudo event that is created. The $CDS_GROUP keyword and the CONTINUE
event attribute are used to control the multiple pass method.

Each pass starts at the beginning of the CDS file. If a CDS is matched that contains
a valid CONTINUE event attribute, at least one more pass will be made through
the CDS file. If a CDS is matched that does not have a CONTINUE statement, or
no CDS is matched, that pass will be the last pass through the CDS file and all of
the event attributes collected to this point are used to create the pseudo event.

EVERY CDS SELECT segment MUST have one statement that looks for the
$CDS_GROUP keyword to be equal to a string in the range of
GROUP001–GROUP999. By default, the initial value of the $CDS_GROUP keyword
is GROUP001, so the first CDS statement matched must look for this keyword to
be equal to GROUP001.

When a CDS is matched, the CONTINUE event attribute definition in the MAP
segment of that CDS controls whether another pass will be made to match another
CDS. The CONTINUE event attribute will cause the value of the $CDS_GROUP
keyword to change to a specific value (CONTINUE = GROUP004) or to the next
numeric value (CONTINUE = NEXT). If a specific value is given, it must be greater
than the current value of the $CDS_GROUP keyword.

To illustrate the usage of the $CDS_GROUP keyword and the CONTINUE event
attribute, using the previous example, fill in the keyword and event attribute as
follows:
CLASS SV05_1

SELECT
1: ATTR(=,$CDS_GROUP), VALUE(=,GROUP001);
2: ATTR(=,resource1);
3: ATTR(=,resource2);

MAP
SV05 = PRINTF("#{05#{1000#{#<%s#>#}0084#{#<%s#>#}0040#}#}", $V2, $V3);
CONTINUE = NEXT;

END

CLASS SV05_2
SELECT
1: ATTR(=,$CDS_GROUP), VALUE(=,GROUP001);
2: ATTR(=,resource1);

MAP
SV05 = PRINTF("#{05#{1000#{#<%s#>#}0084#}#}", $V2);
CONTINUE = NEXT;

END

Chapter 8. Customizing the Event/Automation Service 149

CLASS SV05_3
SELECT
1: ATTR(=,$CDS_GROUP), VALUE(=,GROUP001);
2: ATTR(=,resource2);

MAP
SV05 = PRINTF("#{05#{1000#{#<%s#>#}0040#}#}", $V2);
CONTINUE = NEXT;

END

CLASS SV05_4
SELECT
1: ATTR(=,$CDS_GROUP), VALUE(=,GROUP001);

MAP
SV05_4 = "#{05#{1000#{#<NONE#>#}0084#}#}";
CONTINUE = NEXT;

END

CLASS SV92_1
SELECT
1: ATTR(=,$CDS_GROUP), VALUE(=,GROUP002);
2: ATTR(=,severity), VALUE(=,FATAL);

MAP
SV92 = "0B92010001FE0300000000"

END

CLASS SV92_2
SELECT
1: ATTR(=,$CDS_GROUP), VALUE(=,GROUP002);
2: ATTR(=,severity), VALUE(=,WARNING);

MAP
SV92 = "0B92010011FE0300000000"

END

CLASS SV92_3
SELECT
1: ATTR(=,$CDS_GROUP), VALUE(=,GROUP002);
2: ATTR(=,severity), VALUE(=,HARMLESS);

MAP
SV92 = "0B92010002FE0300000000"

END

CLASS SV92_4
SELECT
1: ATTR(=,$CDS_GROUP), VALUE(=,GROUP002);

MAP
SV92 = "0B92010012FE0300000000"

END

When an EIF event arrives to be translated, the first subvector created is the SV 05
subvector. Because the initial value of the $CDS_GROUP keyword is GROUP001,
the SELECT segments for all of the CDSs that create the SV 05 will look for this
value. If none of the first three CDSs in this group are selected, the fourth will be
selected by default. Because these CDSs define a CONTINUE event attribute with
a value of NEXT, the value of the $CDS_GROUP keyword will be updated to
GROUP002, and another pass will be made through the CDSs to attempt to match
on another CDS.

All of the SV 05 CDSs will now be ignored, because the $CDS_GROUP keyword is
another value. Without this gate, the same SV 05 CDS would continue to be
matched indefinitely. An SV 92 CDS will be matched next. The GROUP002 value
for the $CDS_GROUP keyword determines this. Because none of the SV 92 CDSs
have a CONTINUE event attribute, this will be the last pass made through the
CDS file.

150 Customization Guide

Using the previous CDSs, if an event arrives with event attributes, as follows:
resource1=FIRSTRES
resource2=SECNDRES
severity=WARNING

The following two subvectors will be produced:
1B0519100009C6C9D9E2E3D9C5E2008409E2C5C3D5C4D9C5E20040
0B92010011FE0300000000

Building the NMVT
When the pseudo event has been created, the NMVT will be built from data in the
event attributes and keywords.

Building the SV 31s Containing the Original Event
The $BUILD_SV31LIST keyword indicates whether the SV 31s that contain the
original EIF event data will be built. These SV 31s are added to the NMVT first.
The value of this keyword is modified by the contents of the BUILD_SV31LIST
event attribute.

Each SV 31 contains an element of the original event: the class name, an event
attribute/value pair, or the END designator. Formatted on an NPDA screen, a
simple CDS example follows (assuming that the original event had a class name of
SAMPLE):
ORIGINAL T/EC EVENT:

SAMPLE;
resource1=FIRSTRES;
resource2=SECNDRES;
severity=WARNING;
END

Overriding the SF21 Codepoint
Each SV 31 contains an SF 21 subfield. By default, the codepoint associated with
this subfield is X'00'. Two codepoints allow the SV 31 to be associated with the
alert description and probable causes: codepoint X'21' to probable causes, and
codepoint X'22' to alert description. By default, the SV 31 associated with a severity
event attribute is assigned a X'21' codepoint, and the SV 31 associated with a msg
event attribute is assigned a X'22' codepoint.

You can change which SV 31 is associated with the alert description or probable
causes using the SF21 event attribute. This event attribute contains the name of an
attribute from the input attribute list (which must be an event attribute value from
the incoming EIF event), followed by an equal (=) sign, followed by a one byte
hexadecimal codepoint. For example, if you want to associate an event attribute
called eventdetail from the incoming event with the alert description, code the
following CDS:
CLASS SF21_1

SELECT
1: ATTR(=,$CDS_GROUP), VALUE(=,"GROUP001");
2: ATTR(=,eventdetail);

MAP
SF21_1 = PRINTF("%s=21",$N2);

END

The SF21_1 event attribute value follows:
eventdetail=21

When the SV 31 list is built, the data in the event attribute/value pair named by
eventdetail will be associated with the alert description.

Chapter 8. Customizing the Event/Automation Service 151

This SF 21 override only has an effect if the $BUILD_SV31LIST keyword indicates
that the SV 31 list will be built; if the list is not to be built, this event attribute is
ignored.

Alert or Resolve
The value of the $NMVT_TYPE keyword indicates whether the NMVT will be an
alert NMVT (type 0000) or a resolve NMVT (type 0002). This keyword defaults to
an alert NMVT. If the NMVT_TYPE event attribute is set within any matched CDS,
the value of the $NMVT_TYPE keyword is set to this event attribute.

Adding User Subvectors
After the SV 31s are added and the NMVT type is determined, the user subvectors
created from CDS MAP segments are added to the NMVT. As previously
mentioned, any event attribute can be assigned a value in the MAP segment of a
CDS statement. The only event attributes that will be used to build user
subvectors, however, must be prefixed with SV.

If the same event attribute name is used more than once, the value of the last one
is used as the value of the event attribute. Therefore, if you need multiple
subvectors of the same type, name the event attributes with this subvector data
uniquely. Using SV10 as the event attribute name for more than one SV 10 is not
valid, because all preceding event attributes will be overwritten in the event
attribute list. Use unique names such as SV10_1, SV10_2, and so forth.

The names for subvector event attributes do not necessarily correspond to the
subvector. The value of an event attribute that you name as SV10_1 can contain
data for a completely different subvector. The value of the subvector event
attribute determines the subvector type, not the name of the event attribute.

The value of a subvector event attribute is decoded as previously described.
Subvectors are added to the NMVT in the order that their defining event attributes
are encountered in the MAP segments.

Calculating the AlertID for SV 92
Because the alert ID field must be calculated for the subvector at the time that
NMVT is built, the event receiver will calculate the value for this field of SV 92.
However, you must specify an alert ID place holder in any SV 92 event attributes
that you code in a CDS file. You can put any 4 bytes there; they will be
overwritten by the event receiver. It is recommended that you code four bytes of
zero (00000000) as the place holder.

The event receiver calculates the alert ID as described in SNA Formats.

Example
The following example uses the default event receiver service CDS file
(IHSAECDS) provided in the Event/Automation Service.

Assume that the following EIF event was received by the event receiver:
SNA_Performance_Degraded;source=NV390ALT;origin=B3088P2;
sub_origin=TX12/DEV;hostname=USIBMNT.NTVED;adapter_host=NMPIPL06;
date=OCT 29 16:32:52;severity=WARNING;msg=PERFORMANCE DEGRADED:
CONTROLLER;adapter_host_snanode=USIBMNT.NTVED;
event_type=NOTIFICATION;arch_type=GENERIC_ALERT;
product_id=3745;alert_id=00000009;
block_id=’’;action_code=’’;alert_cdpt=4000;
self_def_msg=[ALRTTXT2];event_correl=[N/A];
incident_correl=[N/A];adapter_correl=E7735930A;END

152 Customization Guide

The previous event was an alert that was changed into an event by the alert
adapter. All of the event attribute/value pairs are first coded into generic attributes
for the input attribute list; the $CLASSNAME keyword attribute is assigned the
value SNA_Performance_Degraded.

The first group in the CDS file is GROUP001; these CDSs determine the NMVT
type. Because there is not a status event attribute in the incoming EIF event, the
NMVT_TYPE event attribute and the $NMVT_TYPE keyword are set to the value
ALERT. Because CONTINUE=NEXT is specified in the MAP segment, the $CDS_GROUP
keyword is set to GROUP002.

The next group in the CDS file defines the SV 93. None of the information in the
original event determines the value of the SV 93; the value of this subvector is as
follows:
0493FE03

CONTINUE=NEXT is specified in the MAP segment. The $CDS_GROUP keyword is set
to GROUP003.

The next group in the CDS file defines the SV 05. The example event will match on
the class SV05_4, it has a host name, origin, and source event attribute, but not a
probe event attribute. After PRINTF and translation, the value of this subvector
follows:
2A052810000EE4E2C9C2D4D5E34BD5E3E5C5C4008408C2F3F0F8F8D7F200F509D5E5F3F9F0C1D3E30040

CONTINUE=NEXT is specified in the MAP segment. The $CDS_GROUP keyword is set
to GROUP004.

The next group in the CDS file defines the SV 10. None of the information in the
original event determines the value of the SV 10; the value of this subvector
follows:
1C10001911040506C7C5D40908F5F6F9F7C2F8F3080FE3C9E5D6D3C9

CONTINUE=NEXT is specified in the MAP segment. The $CDS_GROUP keyword is set
to GROUP005.

The next group in the CDS file defines the SV 92. The example event will match on
the class SV92_4, it has severity=WARNING and the $NMVT_TYPE is set to ALERT.
The value of this subvector follows:
0B92010011FE0300000000

The alert ID portion of this subvector (the last 4 bytes) will be calculated and filled
in by the event receiver. CONTINUE=NEXT is specified in the MAP segment. The
$CDS_GROUP keyword is set to GROUP006.

The next group in the CDS file defines the SV 97. The example event will match on
the class SV97_1, the $NMVT_TYPE is set to ALERT. The value of this subvector
follows:
0A970881200035003000

CONTINUE=NEXT is specified in the MAP segment. The $CDS_GROUP keyword is set
to GROUP007.

Chapter 8. Customizing the Event/Automation Service 153

The next group in the CDS file defines an SF 21. The example event will match on
the one and only CDS for this group, the msg event attribute is present in the
event. The value of this subfield override follows:
msg=21

CONTINUE=NEXT is specified in the MAP segment. The $CDS_GROUP keyword is set
to GROUP008.

The last group in the CDS file defines another SF 21. The example event will match
on this last CDS, the severity event attribute is present in the event. The value of
this subfield override follows:
severity=22

The $BUILD_SV31LIST keyword is still set to YES. The NMVT built from the
previous process follows:
03D800002B310602028000000512C5D5E40321001B30E2D5C16DD7859986969994819583
856DC4858799818485845E22310602028000000512C5D5E40321001230A296A49983857E
D5E5F3F9F0C1D3E35E4A310602028000000512C5D5E40321003A309699898789957EC2F3
F0F8F8D7F261E2D76BD5C1D761E3D76BC4C5C3D5C5E361E3C5D9D46BD9C1D3E5F461C4C5
E56BE3E7F1F261C4C5E55E26310602028000000512C5D5E40321001630A2A4826D969989
8789957EE3E7F1F261C4C5E55E29310602028000000512C5D5E403210019308896A2A395
8194857EE4E2C9C2D4D5E34BD5E3E5C5C45E28310602028000000512C5D5E40321001830
81848197A385996D8896A2A37ED5D4D7C9D7D3F0F65E27310602028000000512C5D5E403
210017308481A3857ED6C3E340F2F940F1F67AF3F27AF5F25E23310602028000000512C5
D5E40321221330A285A5859989A3A87EE6C1D9D5C9D5C75E36310602028000000512C5D5
E4032121263094A2877ED7C5D9C6D6D9D4C1D5C3C540C4C5C7D9C1C4C5C47AC3D6D5E3D9
D6D3D3C5D95E35310602028000000512C5D5E4032100253081848197A385996D8896A2A3
6DA29581959684857EE4E2C9C2D4D5E34BD5E3E5C5C45E2A310602028000000512C5D5E4
0321001A3085A58595A36DA3A897857ED5D6E3C9C6C9C3C1E3C9D6D55E2A310602028000
000512C5D5E40321001A30819983886DA3A897857EC7C5D5C5D9C9C36DC1D3C5D9E35E22
310602028000000512C5D5E4032100123097999684A483A36D89847EF3F7F4F55E243106
02028000000512C5D5E4032100143081938599A36D89847EF0F0F0F0F0F0F0F95E1E3106
02028000000512C5D5E40321000E3082939683926D89847E7D7D5E213106020280000005
12C5D5E403210011308183A38996956D839684857E7D7D5E22310602028000000512C5D5
E4032100123081938599A36D838497A37EF4F0F0F05E2A310602028000000512C5D5E403
21001A30A28593866D8485866D94A2877EADC1D3D9E3E3E7E3F2BD5E2531060202800000
0512C5D5E4032100153085A58595A36D8396999985937EADD561C1BD5E28310602028000
000512C5D5E4032100183089958389848595A36D8396999985937EADD561C1BD5E2B3106
02028000000512C5D5E40321001B3081848197A385996D8396999985937EC5F7F7F3F5F9
F3F0C15E15310602028000000512C5D5E40321000530C5D5C40493FE032A052810000EE4
E2C9C2D4D5E34BD5E3E5C5C4008408C2F3F0F8F8D7F200F509D5E5F3F9F0C1D3E300401C
10001911040506C7C5D40908F5F6F9F7C2F8F3080FE3C9E5D6D3C90B92010011FE030000
00000A970881200035003000

Translating ASCII Text Data
SNMP agents send up data (whether in variable bindings or other parts of the
trap) that is essentially ASCII text data, but the data type in the encoding trap
indicates an octet string. Since the data type is an octet string, the trap-to-alert data
encoding process treats each byte of data as raw hexadecimal data rather than an
encoded character. As a result, the parsing done by the trap-to-alert conversion
task merely turns this data into a character representation of the hex data bytes for
in SELECT criteria in the CDS file. For example, assume the character string ABC
appears in a variable binding value with a type of octet string. Since the data is an
octet string, the data is converted to the character string 414243 and assigned to the
generic keyword associated with the variable binding name.

If you want to use the original ASCII string value of the generic keyword in the
outgoing alert, the ASCII string 414243 needs to be converted back to the character

154 Customization Guide

string ABC and changed to EBCDIC. The $[and $] escape sequence has been
provided to allow for conversion of the EBCDIC character string 414243 back to
the EBCDIC character string ABC.

Within the value encoding, inside the double quotes for the value of the subvector
event attribute (whether in a PRINTF or not), this escape set is used to delimit data
that is considered to be the character representation of hex data that, in turn, is
ASCII character data. Data delimited in this way is turned into EBCDIC character
data and placed within the value of the subvector event attribute. For example, if
you had the following event attribute assignment in a Class Definition Statement:
SV05 = "0B0509100004#[414243#]0040"

The encoding of this event attribute value into an actual hexadecimal alert
subvector would produce:
0B0509100004C1C2C30040

If data within the range delimited by the escape sequences turns out not to be
character representations of hex data that are ASCII characters, then the conversion
to EBCDIC will fail, and the translation of the trap (and thus, building of the
alert/resolve) is terminated and the trap is discarded. Note that if other escape
sequences occur following "#[" and before "#]" is encountered, they are simply
treated as characters that are put into the subvector, which would later fail
conversion to hex then EBCDIC, because they aren't character representations of
hex digits. Also, if "#[" or "#]" occur following the "#<" escape sequence, which
"turns off" translation of character representations of hex digits to hex data in the
subvector, and before "#>", which "restores" that translation mode, then "#[" and
"#]" are simply treated as untranslated character data, and not escape sequences.

Translating SNMP Non-String Data Types
Some attributes used in CDS selection are assigned names based upon the places
in the trap from which their values are extracted, while other names are adapted
directly from the trap (for example, variable names, which are object identifiers, in
the variable bindings). The encoded values are all string data, displayable forms of
the data within the trap, and the formats of these strings depend upon the data
types assigned to these pieces of data in the trap.

As an example, suppose that the data type of a value in the trap was found to be
that of an IP address. The trap-to-alert conversion task would turn this into a
string which was the IP address. The following data types can be assigned to data
in an SNMP trap, and the corresponding string to which it is translated.

integer
signed decimal number string. The integer 30 becomes the EBCDIC string
"30"

null a pair of single quotes in EBCDIC. This becomes the EBCDIC string """.

octet string
hexadecimal data string. The hex string 313233 becomes the EBCDIC string
"313233".

object identifier
ASN.1 data in dotted decimal notation format. The object 2C010306
becomes the EBCDIC string "1.4.1.3.6".

printable string
an EBCDIC string

Chapter 8. Customizing the Event/Automation Service 155

visible string
an EBCDIC string

general string
an EBCDIC string

IP address
IP address. For example, if you are using, dotted decimal notation format,
the address 09080706 becomes the EBCDIC string "9.8.7.6".

counter
unsigned decimal number string. The number 05 becomes the EBCDIC
string "5".

gauge unsigned decimal number string. The number 50 becomes the EBCDIC
string "50".

ticks unsigned decimal number string. The number 132 becomes the EBCDIC
string "132".

When the value is not one of the data types listed, then that value is treated as if it
had a data type of octet string. Also, if the data type of the value in the binding is
a complex structure like SEQUENCE OF (something that should not happen), then
the value is treated as if it had the null data type.

The following example uses the default trap-to-alert service CDS file (IHSATCDS)
supplied with the Event/Automation Service. Assume that the following trap data
is received by the trap-to-alert conversion task (words separated for readability).
303B0201 00040670 75626C69 63A42E06
0C2B0601 14011203 01020101 03400449
B5203F02 01050201 00430100 300F300D
06082B06 01120108 07000201 30

Also assume that the IP address and port associated with the agent originating the
trap is 9.50.20.8 and 161, respectively.

The trap data is first coded into corresponding keyword and generic attributes for
the input attribute list. The encoded string attributes are:

$ORIGIN_ADDR 9.50.20.8
$ORIGIN_PORT 161
$SNMP_VERSION 0
community public
enterpriseOID

1.3.6.1.20.1.18.3.1.3.1.1.3
agent_address 73.181.32.63
generic_trap 5
specific_trap 0
timestamp 0
1.3.6.1.18.1.8.7.0 30

The first group in the CDS file is GROUP001; this CDS determines the NMVT type
and BUILD_SV31LIST setting. Since this trap is not a Multi-System Manager trap,
the generic formatting done by the CDS file IHSATALL is used. The NMVT_TYPE
event attribute (and therefore, the $NMVT_TYPE keyword) is set to the value
ALERT. The BUILD_SV31LIST event attribute (and therefore, the
$BUILD_SV31LIST keyword) is set to the value YES. Since CONTINUE=NEXT is
specified in the MAP segment, the $CDS_GROUP keyword is set to GROUP002.

The next group in the CDS file defines the SV 92. The value of this subvector is:
0B92080012FE0000000000

156 Customization Guide

The Alert ID portion of this subvector (the last 4 bytes) will be calculated and filled
in by the event receiver. CONTINUE=NEXT is specified in the MAP segment, the
$CDS_GROUP keyword is set to GROUP003.

The next group in the CDS file defines the SV 05. After PRINTF and translation,
the value of this subvector is:
22050E100009F7F34BF1F8F14BF300811211000DF7F34BF1F8F14BF3F24BF6F30081

CONTINUE=NEXT is specified in the MAP segment, the $CDS_GROUP keyword
is set to GROUP004.

The next group in the CDS file defines the SV 10. The value of this subvector is:
5A1000281103030000220EE261F3F9F040D78199819393859340C595A3859997
9989A28540E28599A585992F11040804F0F1F0F3F0F01B06E389A596938940D5
85A3E58985A64086969940D6E261F3F9F00908F5F6F9F7C2F8F2

CONTINUE=NEXT is specified in the MAP segment, the $CDS_GROUP keyword
is set to GROUP005.

The next group in the CDS file defines another SV 10, which contains information
about the resource reporting the trap. The value of this subvector is:
2C10000F1109030000090EA495929596A6951A110C0E02F0F0F0F0F0F0F0F0F0
F0F0F00906A495929596A695

CONTINUE=NEXT is specified in the MAP segment, the $CDS_GROUP keyword
is set to GROUP006.

The next group in the CDS file defines the SV 93 and SV 97. The values of these
subvectors are:
0493FE000
A970401210004810000

CONTINUE=NEXT is specified in the MAP segment, the $CDS_GROUP keyword
is set to GROUP007.

The last group in the CDS file defines the SV 98. The enterpriseOID, specific trap,
and generic trap values are added as information in this subvector. The value of
this subvector is:
severity=22

The $BUILD_SV31LIST keyword is still set to YES, the actual NMVT built from the
previous process is:
027B000029310602028000000512C5D5E40321001930D6D9C9C7C9D56DC1C4C4D97EF94B
F6F74BF5F04BF1F85E23310602028000000512C5D5E40321001330D6D9C9C7C9D56DD7D6
D9E37EF1F0F3F45E21310602028000000512C5D5E40321001130E2D5D4D76DE5C5D9E2C9
D6D57EF05E29310602028000000512C5D5E4032100193083969494A49589A3A87EF7F0F7
F5F6F2F6C3F6F9F6F35E3C310602028000000512C5D5E40321002C308595A38599979989
A285D6C9C47EF14BF34BF64BF14BF2F04BF14BF1F84BF34BF14BF24BF14BF14BF35E2D31
0602028000000512C5D5E40321001D3081878595A36D8184849985A2A27EF7F34BF1F8F1
4BF3F24BF6F35E21310602028000000512C5D5E40321001130878595859989836DA39981
977EF55E22310602028000000512C5D5E40321001230A2978583898689836DA39981977E
F05E1E310602028000000512C5D5E40321000E30A3899485A2A38194977EF05E28310602
028000000512C5D5E40321001830F14BF34BF64BF14BF1F84BF14BF84BF74BF07EF4F85E
0B92080012FE00331AA4A122050E100009F7F34BF1F8F14BF300811211000DF7F34BF1F8
F14BF3F24BF6F300815A1000281103030000220EE261F3F9F040D78199819393859340C5
95A38599979989A28540E28599A585992F11040804F0F1F0F3F0F01B06E389A596938940
D585A3E58985A64086969940D6E261F3F9F00908F5F6F9F7C2F8F22C10000F1109030000

Chapter 8. Customizing the Event/Automation Service 157

090EA495929596A6951A110C0E02F0F0F0F0F0F0F0F0F0F0F0F00906A495929596A69504
93FE000A9704012100048100002E98208229F811F14BF34BF64BF14BF2F04BF14BF1F84B
F34BF14BF24BF14BF14BF3068229FA11F5068229FB11F0

Trap-to-Alert Post-CDS Processing
The trap-to-alert service post-CDS processing is nearly identical to that used by the
event receiver post-CDS processing. The differences are:
v There is no $CLASSNAME keyword created by the trap-to-alert service since the

incoming data was not an EIF event.
v An additional escape sequence set $[and $] is available to aid in translating

variable binding data that are ASCII octet strings.
v Unlike EIF event data, SNMP trap data can have a data type other than a

character string.

Advanced Customization - Trap-to-Alert Forwarding Daemon
The way the Event/Automation Service trap-to-alert conversion task receives traps
is through a datagram socket which is bound to a port that you define in the
configuration file (sample member name IHSATCFG). The conventional trap
manager data port number, 162, is the default port.

Since port 162 is a "well-known" port for SNMP managers, and there may be
multiple SNMP manager applications that are interested in trap data, this sort of
port assignment can cause a conflict. To help resolve any conflicts, there is also a
sample datagram forwarding daemon, IHSAUFWD, and an associated sample
configuration file, IHSAUCFG, that are shipped with the Event/Automation
Service. The daemon receives data on a datagram socket and forwards that data to
the destinations given in the configuration file.

Most SNMP agents are set to forward traps to the trap manager at port 162.
IHSAUFWD can use this port to receive the trap data for all interested managers
and then forward this data to the managers. These managers can be on the local
system or at any IP address on the network.

The IHSAUFWD daemon uses a sample configuration file (IHSAUCFG) to specify
the SNMP managers that are to receive the data. A description of the contents of
this configuration file follows:

comments
Comments can be formed by beginning a line with the number sign (#) or
the exclamation point (!).

host IP address and port
To code a destination for the datagram forwarding daemon, put the
following on a line in the file:
v IP address
v white space (one or more blanks)
v port number, in decimal

An example of a lone coded like this would be:
137.45.110.2 6001

For more information about how to use and customize the forwarding daemon, see
the comments in the IHSAUFWD sample.

158 Customization Guide

Detailed Example for Trap-to-Alert Conversion
Suppose an SNMP trap is emitted for a managed entity with a problem, and you
want the NetView program to take some action when it appears. A way to do that
is to have the Event/Automation Service receive the trap, convert it to an alert
NMVT, then use NetView automation to process the alert NMVT and take some
action (execute a command).

Generally, you will need to know something about the information the SNMP trap
contains in order to parse the trap and transfer the most useful of the information
to the alert NMVT so that the processing of the alert NMVT will be the most
effective. Documentation associated with the entities emitting the SNMP traps may
contain this kind of information. It may also be obtained by a trace that is active
when the SNMP trap flows, such as the IP data trace of the Event/Automation
Service or a z/OS Communications Server packet trace.

Knowing what information to expect in the SNMP trap, you then create the class
definition statements necessary to extract the interesting information from the trap
and construct the alert NMVT. Of course, if you are also using Multisystem
Manager's IP management functions, you will want to ensure that your new
definitions are integrated so that Multisystem Manager's IP management functions
still work. The class definition statements in this example are designed so that
theycan be placed in sample member IHSATUSR and work with the sample
definitions provided by the NetView program in IHSATCDS and the other
members it includes.

This example starts with an SNMP trap that is emitted for an uninterruptible
power supply problem. The data is shown in hex and has been separated and
annotated to make the trap contents more clear.
*
* Outermost constructor for the trap (tag and length)
*
30820127
* SNMP version (00 = SNMPv1)
020100
* Community name (public)
04067075626C6963
* Trap PDU
A4820118
* Enterprise object ID (1.3.6.1.4.1.12270)
06072B06010401DF6E
* Agent address (10.71.225.20)
40040A47E114
* Generic trap code (6 = enterprise specific)
020106
* Specific trap code (32 in decimal)
020120
* Timeticks
430402A2D49D
* Variable bindings "container"
308200F9
* Variable binding 1
3015
* Variable 1 (1.3.6.1.4.1.12270.200.2.1.1.1)
060D2B06010401DF6E814802010101
* Value 1 (octet string "1493")
040431343933
* Variable binding 2
3019
* Variable 2 (1.3.6.1.4.1.12270.200.2.1.1.2)
060D2B06010401DF6E814802010102
* Value 2 (octet string "/L20/O50")

Chapter 8. Customizing the Event/Automation Service 159

04082F4C32302F4F3530
* Variable binding 3
3024
* Variable 3 (1.3.6.1.4.1.12270.200.2.1.1.3)
060D2B06010401DF6E814802010103
* Value 3 (octet string "2005-01-10T16:13:00")
0413323030352D30312D31305431363A31333A3030
* Variable binding 4
3014
* Variable 4 (1.3.6.1.4.1.12270.200.2.1.1.4)
060D2B06010401DF6E814802010104
* Value 4 (octet string "I14")
0403493134
* Variable binding 5
3025
* Variable 5 (1.3.6.1.4.1.12270.200.2.1.1.5)
060D2B06010401DF6E814802010105
* Value 5 (octet string "DIGIN ON OCCURRED")
0414444947494E204F4E202020204F43435552524544
* Variable binding 6
3015
* Variable 6 (1.3.6.1.4.1.12270.200.2.1.1.6)
060D2B06010401DF6E814802010106
* Value 6 (octet string "DI=1")
040444493D31
* Variable binding 7
3025
* Variable 7 (1.3.6.1.4.1.12270.200.2.1.1.7)
060D2B06010401DF6E814802010107
* Value 7 (octet string "RC2 Gas Status Man. ")
04145243322047617320537461747573204D616E2E20
* Variable binding 8
3011
* Variable 8 (1.3.6.1.4.1.12270.200.2.1.1.8)
060D2B06010401DF6E814802010108
* Value 8 (NULL)
0500
* Variable binding 9
3011
* Variable 9 (1.3.6.1.4.1.12270.200.2.1.1.9)
060D2B06010401DF6E814802010109
* Value 9 (NULL)
0500

Knowing that this type of SNMP trap will always contain these variable bindings
and that the values, at least of the interesting variables, will always be the same
kind of data, you can use these class definition statements provide a way to
convert the SNMP trap to an alert NMVT. These sample statements contain
additional commentary to explain the trap data transferred to the NMVT.

Note: In the following example, note the following:
v Because of printing constraints, some of the command lines had to be "broken"

in order to fit on the page.
v Use codepage 1047 X'AD' to code a left bracket ([) and codepage 1047 X'BD' to

code a right bracket (]).
#***
#
Definitions for catching an SNMP trap indicating a UPS problem
and turning it into an alert NMVT.
#
First pass, build subvectors X’92’ (generic alert), X’10’
product set ID (one each for alert sender and reported resource),
X’93’ (probable cause), and X’96’ (failure cause).
#

160 Customization Guide

The first pass looks for GROUP001 and a specific trap value
of 32 (the specific trap value in the trap was converted to
a string representing the value in decimal).
#***
CLASS IHSATUSR_UPS1

SELECT
1: ATTR(=,$CDS_GROUP), VALUE(=,"GROUP001");
2: ATTR(=,specific_trap), VALUE(=,"32");

MAP
#
|-- First pass sets desire for alert NMVT

NMVT_TYPE = ALERT;
#
|-- For this, we don’t want SV x’31’ set
| We’ll build our own SV x’31’ later

BUILD_SV31LIST = NO;
#
|-- Alert description code-point
| I chose X’1501’ LOSS OF EQUIPMENT COOLING
| to illustrate.

SV92 = "#{92080001150100000000#}";
#
Hardware and software information for alert builder
(basically hard-coded and uses our software product name,
because E/AS is building the alert NMVT)
#
Note that the line beginning SV10_1 and the line beginning SV10_2 should be
coded on continuous lines up to and including the semicolon character

SV10_1 = "#{1000#{1103#{0000#}#{0E#<S/390 Parallel Enterprise Server#>#}#}#
{1104#{02#<5697-ENV0000#>#}#{04#<050200#>#}#{06#<Tivoli NetView for z/OS#}#}#}";

SV10_2 = "#{1000#{1109#{0000#}#{0E#<UPS system#}#}#{110C#{02#<000000000000#>#}#
{06#<unknown#}#}#}";
#
|-- Probable cause code-point
| x’0301’ COOLING FAN chosen to illustrate.
|

SV93 = "#{930301#}";
#
|-- Failure cause code-point
| X’0301’ COOLING FAN chosen to illustrate
|
| |-- Recommended action code-point
| | X’0300’ CHECK FOR DAMAGE and
| | X’1800’ REPLACE DEFECTIVE EQUIPMENT
| | to illustrate

SV96 = "#{96#{010301#}#{8103001800#}#}";
#
|-- Keep going to next pass (GROUP002, for example)

CONTINUE = NEXT;
END
#
Second pass for our UPS trap - defer to third pass, where we will
use the generic subvector X’05’ (hierarchy/resource list)
construction from member IHSATALL.
#
CLASS IHSATUSR_UPS2

SELECT
1: ATTR(=,$CDS_GROUP), VALUE(=,"GROUP002");
2: ATTR(=,specific_trap), VALUE(=,"32");

MAP
|-- Tells trap to alert to continue to third pass

CONTINUE = NEXT;
END
#
Defer subvector X’05’ definition to GROUP003 generic CLASS

Chapter 8. Customizing the Event/Automation Service 161

definition in IHSATALL
#
#
Fourth pass for UPS trap, construct subvector X’98’ (detailed
data) and subvectors X’31’. ALL selection criteria must be met
in order for inclusion of the information defined here in the
alert NMVT.
#
1) fourth pass, (CDS_GROUP keyword has the value GROUP004)
2) generic trap
#
Because no VALUE was supplied, we just look for
presence of the item, which, for an SNMPv1
trap, should always be there.
#
A primary reason to look for the presence of
of something that should always be there is that
this provides the method by which we can retrieve
the value, perhaps manipulate it, then put it in
the alert NMVT.
#
3) specific trap code with value 32 decimal,
#
4) MIB variable with name "1.3.6.1.4.1.12270.200.2.1.1.1"
#
Because gave no VALUE, we merely expect it to
have been present in the trap, again so we
retrieve its value and use it.
#
5) presence of origin address keyword,
6) presence of origin port keyword,
7) presence of community information,
8) presence of enterprise object ID,
9) presence of agent address,
10) presence of a timestamp,
11) presence of MIB variable "1.3.6.1.4.1.12270.200.2.1.1.2",
12) presence of MIB variable "1.3.6.1.4.1.12270.200.2.1.1.3",
13) presence of MIB variable "1.3.6.1.4.1.12270.200.2.1.1.5"
#
CLASS IHSATUSR_UPS3

SELECT
1: ATTR(=,$CDS_GROUP), VALUE(=,"GROUP004");
2: ATTR(=,generic_trap);
3: ATTR(=,specific_trap), VALUE(=,"32");
4: ATTR(=,"1.3.6.1.4.1.12270.200.2.1.1.1");
5: ATTR(=,$ORIGIN_ADDR);
6: ATTR(=,$ORIGIN_PORT);
7: ATTR(=,community);
8: ATTR(=,enterpriseOID);
9: ATTR(=,agent_address);

10: ATTR(=,timestamp);
11: ATTR(=,"1.3.6.1.4.1.12270.200.2.1.1.2");
12: ATTR(=,"1.3.6.1.4.1.12270.200.2.1.1.3");
13: ATTR(=,"1.3.6.1.4.1.12270.200.2.1.1.5");
MAP

│-- Special detail data = hard-code
│ enterprise information
│ │-- Special detail data
│ │ = generic trap code
│ │
│ │ │-- Special
│ │ │ detail data
│ │ │ = specific
│ │ │ trap code
│ │ │
│ │ │

162 Customization Guide

│ │ │
│ │ │
│ │ │
│ │ │

SV98 = PRINTF("#{98#{8229F811#<Ent_Name#>#}#{8229FA11#<%s#>#}#{8229FB11#<%s#>#}#}",$V2,$V3);
#
Now we also add some X’31’ subvectors to convey additional
information that came in the SNMP trap.
#
Notice something in the definitions for SV31_2 and SV31_6.
Both the community and the information from the variable binding
expected in the SNMP trap are, for this example, presumed to have
ASCII text data even though the data type encoded in the trap
indicates merely OCTET STRING. When E/AS encounters the OCTET
STRING data type, E/AS converts it to a string representing the
value in hexadecimal. Because we have decided it’s really text
data and we want to be able to read in the display of the alert
in hardware monitor, we use the escape character sequences (pound-sign followed
by left bracket and pound-sign followed by right bracket) to delimit
the string representing hexadecimal data and tell E/AS to convert it
to EBCDIC text for inclusion in the subvector we’re building.
#
Subvector x’31’ showing origin IP address:port number
#
Note that this should be coded on one continuous line

SV31_1 = PRINTF("#{31#{0202800000#}#{12#<ENU>#}#{2100#}#{30#<Origin
Address=%s:%s#>#}#}",$V5,$V6);
#
Subvector x’31’ showing community name in EBCDIC
#
Note that the left square bracket must be x’AD’ and the
right square bracket must be x’BD’
#
│--Left square
│ bracket must
│ be x’AD’
│ codepage 1047
│
│ │Right square
│ │bracket must
│ │be x’BD’
│ │codepage 1047
│ │

SV31_2 = PRINTF("#{31#{0202800000#}#{12#<ENU#>#}#{2100#}#{30#<Community=#>#[%s#]#}#}",$V7);
#
Subvector x’31’ showing enterprise object ID
#
Note that this should be coded on one continuous line

SV31_3 = PRINTF("#{31#{0202800000#}#{12#<ENU#>#}#{2100#}#{30#<Enterprise
Object ID=%s#>#}#}",$V8);
#
Subvector x’31’ showing agent IP address
#

SV31_4 = PRINTF("#{31#{0202800000#}#{12#<ENU#>#}#{2100#}#{30#<Agent Address=%s#>#}#}",$V9);
#
Subvector x’31’ showing the timestamp
#

SV31_5 = PRINTF("#{31#{0202800000#}#{12#<ENU#>#}#{2100#}#{30#<Timestamp=%s#>#}#}",$V10);
#
Subvectors x’31’ showing what we presume to be text from the
variable bindings in the trap. We hard-code the MIB variable names
in the text. For the MIB variable values we want to also include
in the text, we are assuming that the values are, in fact, ASCII
text that we want to see in EBCDIC when we display the alert NMVT
in hardware monitor.
#
#

Chapter 8. Customizing the Event/Automation Service 163

Note that the left square bracket must be x’AD’ and the right square bracket
must be x’BD’
Note also that this should be coded on one continuous line

SV31_6 = PRINTF("#{31#{0202800000#}#{12#<ENU#>#}#{2100#}#
{30#<1.3.6.1.4.1.12270.200.2.1.1.1 =
#>#[%s#]#}#}",$V4);
#
Builds SV31 with 1.3.6.1.4.1.12270.200.2.1.1.2 = its value in EBCDIC
#
Note that this should be coded on one continuous line

SV31_7 = PRINTF("#{31#{0202800000#}#{12#<ENU#>#}#{2100#}#
{30#<1.3.6.1.4.1.12270.200.2.1.1.2 = #>#[%s#]#}#}",$V11);
#
Builds SV31 with 1.3.6.1.4.1.12270.200.2.1.1.3 = its value in EBCDIC
#
Note that this should be coded on one continuous line

SV31_8 = PRINTF("#{31#{0202800000#}#{12#<ENU#>#}#{2100#}#
{30#<1.3.6.1.4.1.12270.200.2.1.1.3 = #>#[%s#]#}#}",$V12);
#
Builds SV31 with Message = and the value of the
1.3.6.1.4.1.12270.200.2.1.1.5 MIB variable in EBCDIC.
#
Note that this should be coded on one continuous line

SV31_9 = PRINTF("#{31#{0202800000#}#{12#<ENU#>#}#{2100#}#
{30#<Message=#>#[%s#]#}#}",$V13);
END

For details of the class definition statement processing, see “Multiple-Pass Method”
on page 149 as well as “Trap-to-Alert Post-CDS Processing” on page 158.

Assuming that the hardware monitor recording filters allow the alert NMVT to be
saved, the alert NMVT produced by the trap-to-alert conversion process would
look like this in hardware monitor event detail.
N E T V I E W SESSION DOMAIN: CNM01 NETOP2 08/19/10 13:27:17
NPDA-43S * EVENT DETAIL * PAGE 1 OF 4

NTV90 10.71.22
+--------+

DOMAIN | SP |
+--------+

SEL# TYPE AND NAME OF OTHER RESOURCES ASSOCIATED WITH THIS EVENT:
(1) SP 10.71.225.20

DATE/TIME: RECORDED - 08/19 13:16 CREATED - 08/19/10 13:16:16

EVENT TYPE: PERMANENT

DESCRIPTION: LOSS OF EQUIPMENT COOLING

PROBABLE CAUSES:
COOLING FAN

N E T V I E W SESSION DOMAIN: CNM01 NETOP2 08/19/10 13:27:52
NPDA-43S * EVENT DETAIL * PAGE 2 OF 4

NTV90 10.71.22
+--------+

DOMAIN | SP |
+--------+

QUALIFIERS:
1) ENTERPRISE Ent_Name
2) SNMP GENERIC-TRAP NUMBER 6
3) SNMP SPECIFIC-TRAP NUMBER 32

164 Customization Guide

Origin Address = 10.71.225.21:5644

Community = public

N E T V I E W SESSION DOMAIN: CNM01 NETOP2 08/19/10 13:28:22
NPDA-43S * EVENT DETAIL * PAGE 3 OF 4

NTV90 10.71.22
+--------+

DOMAIN | SP |
+--------+

Enterprise Object ID = 1.3.6.1.4.1.12270

Agent Address = 10.71.225.20

Timestamp = 44225693

1.3.6.1.4.1.12270.200.2.1.1.1 = 1493

1.3.6.1.4.1.12270.200.2.1.1.2 = /L22/O50

N E T V I E W SESSION DOMAIN: CNM01 NETOP2 08/19/10 13:28:40
NPDA-43S * EVENT DETAIL * PAGE 4 OF 4

NTV90 10.71.22
+--------+

DOMAIN | SP |
+--------+

1.3.6.1.4.1.12270.200.2.1.1.3 = 2005-01-10T16:13:00

Message = DIGIN ON OCCURRED

FLAGS:
SNMP TRAP

UNIQUE ALERT IDENTIFIER: PRODUCT ID - 5697-ENV0 ALERT ID - 673BB726

Of course, NetView automation could be used to drive one or more commands
that scan the alert NMVT and take actions based upon the information found in it.

Alert-to-Trap Post-CDS Processing
The alert-to-trap service post-CDS processing converts the EIF event that is
produced from the CDS process into an SNMP trap.

All non-variable binding information in the trap is put into the constructed trap by
the alert-to-trap service directly, without the opportunity to customize it using the
CDS file. The only exception to this is the specific trap value.

The alert-to-trap adapter sets the non-variable binding fields as follows:

version
0

community
the value of the community statement from the alert-to-trap configuration
file (IHSAATCF)

Chapter 8. Customizing the Event/Automation Service 165

enterpriseOID
the value of the enterpriseOID statement from the alert-to-trap
configuration file

IP address
the local host IP address

generic type
6

timestamp
0

The specific type is taken from the value of the specific event attribute that is
created by the CDS processing.

All other slot/value pairs are encoded into variable bindings on the trap. If the
name of the slot in the alert-to-trap adapter CDS file is a valid object id, the slot
name is used as the object id in the variable binding and the value of the slot
becomes the value of the variable binding. If the slot name in the CDS file is not a
valid object id, an object id of 1.3.6.1.4.1.2.5.1.4.1.4.x is used for the variable
binding and the value of the variable binding is slot=value, where slot is the CDS
file slot name and value is the CDS file value. The value of x is an index starting at
1 that is increased by one for each variable binding in the trap.

For example, a CDS file MAP statement that maps the slot name
1.3.6.1.4.1.2.5.1.4.1.4.1 to the value examplevalue has a variable binding in the
final trap with an object id of 1.3.6.1.4.1.2.5.1.4.1.4.1 and a value of
examplevalue.

A CDS file MAP statement that maps the slot name source to the value examplevalue
has a variable binding in the final trap with an object id of
1.3.6.1.4.1.2.5.1.4.1.4.1 and a value of source=examplevalue. The object id in
this example assumes that there were no other variable bindings that required the
object id to be created by the alert-to-trap adapter, and therefore the starting index
for this object id is 1.

166 Customization Guide

Chapter 9. NetView Instrumentation

NetView instrumentation consists of subsystems. The topology display subsystem
is available if you have the NetView management console or the Tivoli Business
Service Manager program installed. For any other subsystem, including the event
flow subsystem, the Tivoli Business Service Manager program must be installed.

Considerations
The REXX programs for NetView instrumentation have been compiled with the
ALTERNATE option. If you access the REXX runtime library from NetView,
instrumentation REXX programs run in compiled mode. Otherwise, the REXX
alternate library is used and instrumentation REXX programs run in interpreted
mode. If the REXX runtime library or REXX alternate library is not accessible from
the pageable link pack area (PLPA), you must modify the NetView start procedure
to access one of these libraries.

Events carrying management information to the topology server start as messages
containing keyword/value pairs. These messages issued by the API are BNH351I,
BNH352I, BNH353I, and BNH354I. These messages are converted and forwarded
to a topology server.

Customization
The following samples were updated for application management instrumentation.
You might need to customize them for your environment.
v CNMSTYLE

Use CNMSTYLE %INCLUDE member CNMSTUSR or CxxSTGEN to add the
DSIAMIAT automation table and the AUTOAMI autotask. Also, copy the
TOWER statement from CNMSTYLE to CNMSTUSR or CxxSTGEN and remove
the asterisk (*) from the AMI tower.

v DSIAMIAT- in sample DSIPARM
A separate automation table for application management instrumentation. You
need to uncomment one of the following includes:
– %INCLUDE DSIAMIR - to route the BNH351-BNH354 messages to another

NetView program. Use this for NetView Version 2 Release 4 and Version 3
Release 1.

– %INCLUDE DSIAMIT - to route the BHN351-BNH354 messages to a message
adapter (the Event/Automation Service should be started). You might need to
modify the PPI receiver ID of your Event/Automation Service message
adapter (default is IHSATEC). The message adapter converts and sends the
messages to Tivoli Enterprise Console or Tivoli Netcool/OMNIbus, where
program rules format and send the converted messages to the Tivoli Business
Service Manager program.
Configure the message adapter by including IHSAAPMF in the message
adapter format file. Refer to theIBM Tivoli NetView for z/OS Installation:
Configuring Additional Components for more information.
Configure the Tivoli Enterprise Console event console or Tivoli
Netcool/OMNIbus by importing the files interapp.baroc and interapp_o.rls to
your rules base if they were not previously added by the ihsttec.sh script. See
the Tivoli Business Service Manager library for more information.

© Copyright IBM Corp. 1997, 2015 167

– %INCLUDE DSIAMIN - to route the BHN351-BNH354 messages directly to a
NetView management console topology server across NETCONV (this is the
default)

v DSIAMII- in sample DSIPARM
Application management instrumentation member
– On the focal point NetView (the NetView system that routes messages to the

topology server or message adapter), code the NetView domain of all remote
NetView programs (if any) with the RMTLU=luname keyword.

– Customize the monitor default threshold specifications and polling intervals
as appropriate for your environment. Note that the defaults defined here
apply to all instances of a component or connection type. You can change
threshold specifications and polling intervals for a specific instance by
invoking the set threshold or set polling interval tasks.
You can define multiple threshold specifications. Each one consists of three
values. The first value is the threshold value, the second value is the operator,
the third value is the severity of the threshold event. For example:
BEGIN_THRESHOLD
SS=Tivoli;TME10NVCNMTAMEL;1.2
MONITOR=(’STATE’UP,6,0,DOWN,6,5 MVR=CNMETDMV 10)
MONITOR=(’IPC QUEUE’ 25,8,2)
MONITOR=(’VIEWMGR QUEUE’ 25,8,2)
MONITOR=(’VSTATMGR QUEUE’ 25,8,2)
END_THRESHOLD

In the example, for the IPC QUEUE monitor, when the current value goes
over (operator 8) 25, a WARNING (2) threshold event is sent.
The meaning of each value is:
1. The threshold value against which the current monitor value is compared.
2. The comparison operator used to compare the current monitor value

against the threshold value:
0 = greater than
1 = greater than or equal
2 = less than
3 = less than or equal
4 = equal
5 = not equal
6 = changes to
7 = changes from
8 = goes over
9 = goes less than
10 = matches
11 = does not match

3. The severity of the threshold event to be sent if a match occurs follows:
0 = "NORMAL"
1 = "INFORMATIONAL"
2 = "WARNING"
3 = "SEVERE"
4 = "CRITICAL"
5 = "FATAL"

– The following list details what you can customize in DSIAMII to activate one
or all of the components.
- Hardware monitor component

INIT=CNME3016(60)
TERM=CNME3017()

The parameter for CNME3016 is the heartbeat_interval.
- Event/Automation Service components (message adapter, alert adapter,

event receiver)

168 Customization Guide

INIT=CNME9503(60 IHSAEVNT.IHSATEC)
TERM=CNME9531()

Change the INIT=CNME9503 statement to include the procname and PPI
receiver ID of your adapters.

- MSM agent instrumentation
INIT=FLCAPMIN(60)
TERM=FLCAPMTR()

The parameter for FLCAPMIN is the heartbeat_interval.
- Topology display subsystem components. These DSIAMII members have

multiple statements for instrumentation initialization. The statements are as
follows:

INIT=CNMETDIN(HBEAT,60)
INIT=CNMETDIN(QDEPTH,10)
INIT=CNMETDIN(GMFHS,CNMSJH10.C)
INIT=CNMETDIN(GPARM,DOMAIN=CNM01)
INIT=CNMETDIN(RODM,EKGXRODM.X)
INIT=CNMETDIN(COLDPARM,TYPE=COLD,INIT=EKGLISLM)
INIT=CNMETDIN(WARMPARM,TYPE=WARM)
INIT=CNMETDIN(COMPLETE)

The parameters are:
v HBEAT specifies the heartbeat. It is required.
v QDEPTH specifies the queue depth. It is required.
v GMFHS specifies the GMFHS startup procedure and its alias. It is

required.
v GPARM specifies the parameters to be used with the GMFHS start-up

procedure. It is not required but if the domain value is not specified
here, GMFHS will look to find the domain in the initialization member
DUIGINIT or in the specified GMFHS start-up procedure.

v RODM specifies the RODM start-up procedure and its alias. It is
required.

v COLDPARM specifies the parameters for a RODM start-up procedure
when a user chooses to do a RODM cold start. It is not required.

v WARMPARM specifies the parameters for a RODM start-up procedure
when a user chooses to do a RODM warm start. It is not required.

If you create instrumentation, you should modify DSIAMII to add default
threshold specifications and calls to instrumentation initialization and
termination routines. See the Tivoli Business Service Manager library for API
descriptions.

Starting and Stopping Instrumentation
To start instrumentation, issue the INITAMI command on the focal point NetView
(the NetView program that routes messages to the message adapter). INITAMI is
automatically issued on NetView programs defined as remote in DSIAMII. The
INITAMI command starts the AUTOAMI on the focal point of the NetView
program (if not already started). The console identifier for AUTOAMI is set to
AMIxxxxx where xxxxx is the five rightmost characters of the NetView domain.
Therefore, the console will be unique within a sysplex, and the commands issued
from the autotask will correlate.

Chapter 9. NetView Instrumentation 169

Instrumentation is not, however, forced to run on AUTOAMI. Therefore, in
environments with multiple NetView programs in a system, or in a sysplex, the
INITAMI command should be issued on autotask AUTOAMI.

The INITAMI command also establishes a RMTCMD session with any NetView
system whose domain name is coded on the RMTLU statement in DSIAMII. This
will log on the AUTOAMI autotask on that NetView program.

To stop instrumentation, issue the TERMAMI command. TERMAMI is
automatically issued on NetView programs defined as remote in DSIAMII. In
addition, stop the AUTOAMI autotask on the focal point NetView. This ends the
RMTCMD sessions established by INITAMI.

The topology server can issue instrumentation-related commands after issuing the
TERMAMI command. However, the AUTOAMI autotask must be started for this to
work.

Customizing the IBM Tivoli Enterprise Console
If you route the instrumentation messages to the IBM Tivoli Enterprise Console
through the Event/Automation Service message adapter, you will need to
customize the console.

ACB Monitor Customization
The application control block (ACB) Monitor focal point receives status updates for
ACBs from the focal point Virtual Telecommunications Access Method (VTAM)
and entry point VTAMs. If used in conjunction with the Tivoli Business Service
Manager program, the ACB Monitor discovers the following:
v generic resources
v user-specified applications,
v applications matching user-specified models

The ACB Monitor also monitors the following:
v ACB status
v session count
v persistent recovery events for ACB applications

If used in conjunction with the Tivoli Business Service Manager program or with
the NetView management console TN3270 management, the ACB Monitor
discovers TN3270 servers and clients. Optionally, ACB data can be saved in a DB2®

database.

Define one ACB Monitor focal point for each System complex (or sysplex, the set
of z/OS systems). To fully enable instrumentation of application dynamics in a
sysplex environment, define all other images in the sysplex to be entry points of
that focal point.

By saving ACB data in DB2, you can query telnet clients by IP address, host name,
or application name (using the Locate TN3270 Client TBSM tasks). You can also
change your list of critical TN3270 client resources without restarting the ACB
Monitor.

Note:

170 Customization Guide

1. To save ACB data to DB2, DB2 must be operational on the ACB Monitor focal
point, and the NetView SQL pipe stage must be enabled.

2. The AMI must be enabled on the ACB Monitor focal point to enable the ACB
Monitor instrumentation.

Parts
The parts that are shipped as part of the ACB Monitor are listed in Table 17.

Table 17. Tivoli Business Service Manager parts list

Part Name Language Function

TN3270.BSDF MIF TN3270 business system description file

TN3270.BCDF MIF TN3270 business component description file

TN3270.BMDF MIF TN3270 business mapping description file

TN3270.CDF MIF TN3270 component definition file

Ltn3270loc.ddf DDF Locate TN3270 client local dialog definition

Ltn3270glob.ddf DDF Locate TN3270 client global dialog definition

TN3270.html HTML Help file

GENRSC.BSDF MIF Generic Resources business system description
file

GENRSC.BCDF MIF Generic Resources business component
description file

GENRSC.BMDF MIF Generic Resources business mapping
description file

GENRSC.CDF MIF Generic Resources component definition file

GENRSC.html HTML Help file

VTAMAPPL.BSDF MIF VTAM Application business system
description file

VTAMAPPL.BCDF MIF VTAM Application business component
description file

VTAMAPPL.BMDF MIF VTAM Application business mapping
description file

VTAMAPPL.CDF MIF VTAM Application component definition file

VTAMAPPL.html HTML Help file

Defining a Focal Point
To define an ACB Monitor focal point, perform the following steps:
1. Customize the automation table in sample DSIAMIAT. Uncomment the following

include: %INCLUDE CNMSVTFT.
2. Customize the AMI configuration member in sample DSIAMII using the

following steps:
a. Code the NetView domain name of each ACB Monitor entry point on

AMONLU=keyword.
b. Do you want to save ACB data to DB2?
v If yes, perform steps 2c and 2d.
v If no, go to step 2e on page 172.

c. Code AMONDB2=y.
d. Code the DB2 volume on DB2VOL=keyword.

Chapter 9. NetView Instrumentation 171

e. Code the DB2 volume catalog on DB2VCAT=keyword.
f. Code the DB2 buffer pool on DB2BUFFERPOOL=keyword for each predefined

VTAM Application to be monitored.
3. Customize the list of VTAM applications and models to be discovered in

sample DSIAMII as follows:
a. Code the application name on APPLCOMPONENT=applname for each predefined

VTAM application to be monitored.
b. Code the model name on MODELCOMPONENT=modelname for each VTAM model

to be monitored.
4. Do you want to save ACB data to DB2?
v If no, go to step 5.
v If yes, customize the DB2 parameters in sample DSIAMII by completing the

following steps:
a. Code AMONDB2=Y.
b. Code the DB2 volume on DB2VOL=keyword.
c. Code the DB2 volume catalog on DB2VCAT=keyword.
d. Code the DB2 buffer pool on DB2BUFFERPOOL=keyword.

5. Customize the default thresholds in sample DSIAMII. You can customize any of
the following:
v when threshold events are issued for the ACB status monitor
v the severity of the events issued for the ACB status monitor
v the session count monitor
v the persistent recovery monitor

Customization in DSIAMII defines default thresholds. You can also customize
thresholds for each instance (icon) with the set threshold task.
For example, if you want to change the threshold severity of CONCT and RESET
states to SEVERE (3) rather than INFORMATIONAL (1) for APPLCOMPONENT and
MODELCOMPONENT Applications, change the following line:
ACT,6,0,CONCT,6,1,RESET,6,1,INACT,6,2,UNKNOWN,6,2,PINACT,6,4,PACT,6,4

To:
ACT,6,0,CONCT,6,3,RESET,6,3,INACT,6,2,UNKNOWN,6,2,PINACT,6,4,PACT,6,4

Or, if you want a WARNING threshold event to be issued when session counts
exceed 999, and a NORMAL threshold event when session counts fall below 1000,
change the following line:
MONITOR=(’SESSION COUNT’ 0,1,0 EVENT)

To:
MONITOR=(’SESSION COUNT’ 999,8,2,1000,9,0 EVENT)

6. Install the ACB Monitor VTAM exit. Link edit CSECT CNMIETMN into load module
ISTIETMN in the VTAMLIB DD for VTAM.

Defining an Entry Point
To define an ACB Monitor entry point, perform the following steps.
1. Customize the automation table in sample DSIAMIAT. Uncomment the following

include: %INCLUDE CNMSVTET
2. Install the ACB Monitor VTAM exit. Linked CSECT CNMIETMN into load module

ISTIETMN in the VTAMLIB DD of VTAM.

172 Customization Guide

Starting the VTAM ACB Monitor
Start the AMI by issuing the INITAMI command on the focal point NetView
system to enable instrumentation for:
v generic resource
v TN3270 servers
v APPLCOMPONENT VTAM applications
v MODELCOMPONENT VTAM applications

To start the VTAM ACB Monitor, issue the INITAMON command on the focal
point NetView. The focal point and all entry points identified on the
AMONLU=keyword will be activated.

After the VTAM ACB Monitor has been activated, issue the INITAMON
entry_point command, to activate an additional entry point, where entry_point is the
NetView domain name of the entry point.

Recovering a VTAM ACB Monitor Entry Point:

When the RMTCMD LU 6.2 session between an entry point and the focal point
fails, the entry point is automatically stopped. When the error that caused the
communication failure between the two NetView programs has been corrected,
issue the INITAMON entry_point command on the focal point to recover the entry
point.

Stopping the VTAM ACB Monitor
To stop the VTAM ACB Monitor, issue the TERMAMON command on the focal
point NetView. The focal point and all active entry points will be deactivated.

To stop a specific entry point, issue the TERMAMON entry_point command, where
entry_point is the NetView domain name of the entry point. Status for all of the
applications on the VTAM associated with that NetView system will be removed
from the database.

Chapter 9. NetView Instrumentation 173

174 Customization Guide

Chapter 10. Designing HTML Files for the NetView Web Server

The NetView program provides a web application server that accepts commands
through a web browser interface. You can design HTML files for your own web
page.

Referencing Files and Commands
The HTML for accessing the NetView program from the web browser is
dynamically generated at the web application server.

The HTML (including user-written HTML) can be divided between the web
application server (workstation) and the NetView for z/OS host. This can include
referencing workstation files from host HTML.

Understanding the Base URL
The following is a typical URL when browsing the NetView program:
https://web_application_server:port/netview/domain_ID/

where web_application_server:port is the TCP host name and port number of the
HTTPS server on which the NetView web application is installed, netview is the
NetView web application context root, and domain_ID is the domain ID of the
NetView for z/OS program to which you want to connect.

The URL in the example is considered to be the base URL. If the URL contains a
question mark, any remaining data is considered query data and is not considered
to be part of the base URL.

Referencing Workstation Files on the Web Application Server
References to other sources should be relative to the base URL. For files on the
web application server, use ../ to back up to the /netview/ directory.

Referencing NetView Commands
The following example specifies the NetView command to be issued. Any blanks
in the command must be specified as a plus sign (+) so that the command will be
correctly parsed. The NetView web server (DSIWBTSK) changes the plus signs to
blanks before issuing the command.
https://web_application_server:port/netview/domain_ID/?DSICMDS+=+command

Adding Tasks and Links to the Portfolio
You can customize the NetView web application by adding tasks (links) for your
own web pages or for other web pages. To add tasks to the portfolio, use the
webmenu statement; for more information, see the IBM Tivoli NetView for z/OS
Administration Reference or the CNMSTWBM member.

For example, if you want to add a new group of tasks, add an ID for your group
to the webmenu.groups statement that already exists. To assign a name for your
group, use the webmenu.group_ID.name statement. To assign one or more tasks
(links) to your group, identify the IDs of your tasks with the
webmenu.group_ID.groups statement.

© Copyright IBM Corp. 1997, 2015 175

To define each task in your new group:
v Assign a name for the task with the webmenu.group_ID.task_ID.name statement.
v Assign an action for the task with the webmenu.group_ID.task_ID.action

statement.

For example, to call a NetView program-based HTML-generating routine named
myhtml, use the following webmenu statements:
webmenu.group_ID.task_ID.name = My HTML
webmenu.group_ID.task_ID.action =

https://web_application_server:port/netview/domain_ID/?DSICMDS=myhtml

To launch a web site (such as http://www.ibm.com/), you must include http: (or
https:) and code each slash in the action statement, as shown in the following
webmenu statement:
webmenu.group_ID.task_ID.action = http:&slash;&slash;www.ibm.com/

Note:

1. For an example of launching a web site, see the webmenu statements for the
Launch Sample URL task in the CNMSTWBM member.

2. Ensure that user-defined uniform resource identifiers (URIs) do not contain 2
consecutive slashes; instead, a URI must specify 2 consecutive slashes in one of
the following ways:
v &SLASH;/
v /&SLASH:
v &SLASH;&SLASH;

Using REXX to Generate HTML
The NetView program supports an interface similar to the Common Gateway
Interface (CGI) for REXX procedures. Use the REXX function CGI () to determine
whether your procedure was invoked by the NetView web server. If CGI ()
returns 1, the procedure can create a dynamic web page by ensuring that the
beginning characters of the first line of output are either:
v <HTML
v <!DOCTYPE

Note: HTML and DOCTYPE must be in uppercase.

In this case, the NetView program does not modify or add to the output. You can
create output using the pipe stage CONSOLE ONLY to prevent the logging and
automation of the HTML output.

Note: The CGI function is the preferred method to provide customization.

To improve performance, you can place static HTML or binary files on the web
application server.

The NetView web application continues to process both the POST method and the
GET method in user-written HTML. If you are using the POST method, the
NetView web application changes it to a GET before processing. For the GET
method, all relevant data is placed in the query string portion of the URL and is
displayed at the top of the browser window. You can add a TITLE element in your
HTML so that the TITLE is displayed instead of the data in the query string.

176 Customization Guide

http://www.ibm.com/

Appendix A. Color Maps for Hardware Monitor Panels

Table 18 lists the panel name, panel number, and color map for hardware monitor
panels. See Chapter 6, “Customizing Hardware Monitor Displayed Data,” on page
77 for more information on color maps.

Note: Color maps for hardware monitor help and command description panels are
available only in prior releases of the NetView. program. Also, color maps
beginning with BNJMP1 are no longer supported.

Table 18. Color Maps for Hardware Monitor Panels

Panel Name Panel Number Color Map

Alerts-Dynamic
Alerts-History
Alerts-Static
Common Format Glossary

NPDA-30A
NPDA-31A
NPDA-30B
NPDA-02C

BNJMP30A
BNJMP31A
BNJMP30A
BNJMP2C1

Controller Information Display
Downstream Member of Token-Ring LAN Fault Domain

NPDA-02E
NPDA-44B

BNJMP02E
BNJMP4BH

DSU/CSU and Line Status DSU/CSU and Line Parameters Link
Segment Level n

NPDA-22C, page 1 BNJMPDL1

DSU/CSU and Line Status Remote DSU/CSU Interface-Remote
Device Status-Link Segment Level n

NPDA-22C, page 2 BNJMPDL2

DSU/CSU and Line Status Configuration Summary, Link Segment
Level n

NPDA-22C, page 3 BNJMPDL3

Event Detail
Event Detail
Event Detail
Event Detail
Event Detail

NPDA-43B
NPDA-43M
NPDA-43N, 43Q
NPDA-43C
NPDA-43T

BNJMP43B
BNJMP43M
BNJMP43N
BNJMP43C
BNJMP43T

Event Detail
Event Detail
Event Detail
Event Detail, alternate
Event Detail, alternate

NPDA-43A
NPDA-43P NPDA-43S
NPDA-43T NPDA-43S

BNJMP43A
BNJMP43P BNJMP43S
BNJMP434 BNJMP433

Event Detail for
BSC Line
Event Detail for BSC Station
Event Detail for BSC/SS Line
Event Detail for BSC/SS Station
Event Detail for Channel-Attached Station

NPDA-43T NPDA-43T
NPDA-43B NPDA-43B
NPDA-43B

BNJMP43T BNJMP43T
BNJMP43B BNJMP43B
BNJMP43B

Event Detail for Channel Link
Event Detail for Instruction Exception
Event Detail for Miscellaneous Interrupts
Event Detail for Scanner-Type 1/4
Event Detail for Scanner-Type 2/3

NPDA-43B NPDA-43J
NPDA-43K
NPDA-43G
NPDA-43H

BNJMP43B BNJMP43J
BNJMP43D
BNJMP43D
BNJMP43D

© Copyright IBM Corp. 1997, 2015 177

Table 18. Color Maps for Hardware Monitor Panels (continued)

Panel Name Panel Number Color Map

Event Detail for Scanner-Type 1
Event Detail for Scanner-Type 2
Event Detail for Scanner-Type 3
Event Detail for Scanner-Type 4
Event Detail for SDLC Line

NPDA-43D
NPDA-43E NPDA-43F
NPDA-43I NPDA-43P

BNJMP43D
BNJMP43D
BNJMP43D
BNJMP43D
BNJMP43B

Event Detail for
SDLC Line
Event Detail for SDLC Station
Event Detail for SDLC Station
Event Detail for 3270 Non-SNA Controller
Event Detail Menu Event Detail Menu

NPDA-43T NPDA-43B
NPDA-43T NPDA-43L
NPDA-43R
NPDA-43R

BNJMP43T BNJMP43B
BNJMP43T BNJMP43L
BNJMP43R
BNJMP43R

Event Detail Menu, alternate
Event Detail Menu for BSC Line
Event Detail Menu for BSC Line, alternate
Event Detail Menu for BSC Station
Event Detail Menu for BSC Station, alternate

NPDA-43R
NPDA-43R NPDA-43T
NPDA-43R NPDA-43T

BNJMP432 BNJMP43R
BNJMP434 BNJMP43R
BNJMP434

Event Detail Menu for SDLC Line Event
Detail Menu for SDLC Line, alternate
Event Detail Menu for SDLC Station
Event Detail Menu for SDLC Station, alternate
Event Summary

NPDA-43R NPDA-43T
NPDA-43R NPDA-43T
NPDA-42A

BNJMP43R BNJMP434
BNJMP43R BNJMP434
BNJMP42A

Event Summary
Event Summary
Glossary displays
HELP Menu
Hexadecimal Display of Error Record

NPDA-42B
NPDA-42C (many
displays) NPDA-44C
NPDA-02B

BNJMP42B
BNJMP42C
BNJMPGLO
BNJMP44C
BNJMP02B

Line Analysis-Link Segment Level n
Link Configuration
Link Configuration
Link Configuration, alternate

NPDA-24B
NPDA-44A1
NPDA-44A2
NPDA-44A1

BNJMPLNA
BNJMP441 BNJMP442
BNJMP443

Link Configuration Summary-Level
Selection

Link Data for SNA Controller
Link Problem Determination Aid (LPDA-1) Data
Link Problem Determination Aid (LPDA-1) LDM Data

NPDA-LSLS
NPDA-23A
NPDA-52A
NPDA-52AL

BNJMPLSL
BNJMP23A
BNJMP52A
BNJMP52L

(LPDA-2) Data Link Segment Level 1
(LPDA-2) Data Link Segment Level 1, alternate
(LPDA) Data Link Segment Level 2

NPDA-52B
NPDA-52B
NPDA-52C

BNJMP52B
BNJMP522
BNJMP52B

Link Status and Test Results
Link Status and Test Results for LDM
LPDA-1 Command Menu
LPDA-2 Command Menu
Menu

NPDA-24A
NPDA-24AL
NPDA-LPDA1
NPDA-LPDA2
NPDA-01A

BNJMP24A
BNJMP24L BNJMPLP1
BNJMPLP2
BNJMP01A

178 Customization Guide

Table 18. Color Maps for Hardware Monitor Panels (continued)

Panel Name Panel Number Color Map

Modem and Line Status Modem and Line Parameters Link Segment
Level n

NPDA-22B, page 1 BNJMPML1

Modem and Line Status Remote Modem Interface-Remote Device
Status-Link Segment Level n

NPDA-22B, page 2 BNJMPML2

Modem and Line Status Configuration Summary, Link Segment
Level n

NPDA-22B, page 3 BNJMPML3

Most Recent Events
Most Recent Statistical Data
Most Recent Statistical Data
Most Recent Statistical Data
Most Recent Statistical Data
Most Recent Statistical Data

NPDA-41A
NPDA-51E NPDA-51F
NPDA-51G
NPDA-51H NPDA-51I

BNJMP41A
BNJMP51E BNJMP51F
BNJMP51G
BNJMP51H BNJMP51I

Most Recent Statistical Data
Most Recent Statistical Data for Printer
Most Recent Statistical Data for Tape
Most Recent Traffic Statistics
Most Recent Traffic Statistics for BSC/SS Station

NPDA-51B
NPDA-51D
NPDA-51C
NPDA-51A
NPDA-51A

BNJMP51B BNJMP51B
BNJMP51B
BNJMP51A
BNJMP51A

Most Recent Traffic Statistics for BSC STA. w/LPDA
Most Recent Traffic Statistics for Channel Attached STA
Most Recent Traffic Statistics for Local CTRL

NPDA-51A
NPDA-51A
NPDA-51A

BNJMP51A
BNJMP51A
BNJMP51A

Most Recent Traffic Statistics for SDLC
Station
Most Recent Traffic Statistics for SDLC STA. w/LPDA
Multiple Entries for Selected Resource
Overwrite Map

NPDA-51A
NPDA-51A
NPDA-70A (all
displays)

BNJMP51A
BNJMP51A
BNJMP70A
BNJOVERW

Recommended Action for Selected Event
Recording and Viewing Filter Status
Release Level for SNA Controller
Remote DTE Interface Status
Remote DTE Interface Status for LDM

NPDA-BNIxxxyyy
NPDA-20A,20B
NPDA-21A
NPDA-25A
NPDA-25AL

BNJMP45A
BNJMP20A
BNJMP21A
BNJMP25A
BNJMP25A

Remote Self-Test Results
Remote Self-Test Results for LDM
Reported Resource Hardware
Reported Resource Software Product
Screen Control/Help
Screen Control/Help

NPDA-22A
NPDA-22AL
NPDA-44B NPDA-44B
NPDA-02A, page 1
NPDA-02A, page 2

BNJMP22A
BNJMP22L BNJMP44B
BNJMP4BS
BNJMP2A1
BNJMP2A2

Appendix A. Color Maps for Hardware Monitor Panels 179

Table 18. Color Maps for Hardware Monitor Panels (continued)

Panel Name Panel Number Color Map

Sender Hardware Product ID
Sender Software Product ID
Statistical Counter Detail Display, page 1
Statistical Counter Detail Display, page n
Statistical Detail
Statistical Detail
Statistical Detail Display for Ethernet
Statistical Detail Menu

NPDA-44B NPDA-44B
NPDA-54D
NPDA-54D
NPDA-53E NPDA-53F
NPDA-53KA
NPDA-53R

BNJMP4BH
BNJMP4BS BNJMP541
BNJMP54N
BNJMP53E BNJMP53F
BNJMP53K
BNJMP43R

Statistical Detail
Menu for BSC
Statistical Detail Menu for SDLC
TEST Information Display
Total Events
Total Statistical Data

NPDA-53R
NPDA-53R
NPDA-02D
NPDA-40A
NPDA-50A

BNJMP43R
BNJMP43R
BNJMP02D
BNJMP40A
BNJMP50A

Transmit Receive
Test-Link Segment Level n
Upstream Member of Token-Ring Fault Domain

NPDA-25B NPDA-44B BNJMPTRT
BNJMP4BH

180 Customization Guide

Appendix B. NetView Macros and Control Blocks

The macros and control blocks identified in this appendix are provided by the
NetView program as programming interfaces for customers.

Attention: Do not use as programming interfaces any NetView macros other than
those identified in this appendix.

General-Use Programming Interface Control Blocks and Include Files
The following control blocks and include files are provided as general-use
programming interfaces.

Name Use
DSIBC NetView Bridge HLL C include file
DSIBCCALL NetView Bridge HLL C service routine definition
DSIBCCNM NetView Bridge HLL C return codes
DSIBCHLB NetView Bridge HLL C mapping of DSIHLB
DSIBPCNM NetView Bridge HLL PL/I return codes
DSIBPHLB NetView Bridge HLL PL/I mapping of DSIHLB
DSIBPHLS NetView Bridge HLL PL/I service routine definitions
DSIBPLI NetView Bridge HLL PL/I include file
DSIC Main HLL C include file
DSICCALL HLL C service routine definitions
DSICCNM HLL C return codes
DSICCONS HLL C constants
DSICHLB HLL C mapping of DSIHLB
DSICORIG HLL C origin block mapping
DSICPRM HLL C NetView bridge parameter block
DSICVARC HLL C varying length character strings
DSIPCNM HLL PL/I return codes
DSIPCONS HLL PL/I constants
DSIPHLB HLL PL/I mapping of DSIHLB
DSIPHLLS PL/I definitions for HLL service routines
DSIPLI Main HLL PL/I include file
DSIPORIG HLL PL/I origin block mapping
DSIPPRM HLL PL/I NetView bridge parameter block
EKG1ACCB PL/I RODM access block
EKG1ENTB PL/I RODM entity access information block
EKG1FLDB PL/I RODM field access information block
EKG1IADT PL/I abstract data types
EKG1IEEP PL/I external entry point declaration
EKG1IINC PL/I include statements
EKG1LOGT PL/I log record type definitions
EKG1TRAB PL/I RODM transaction information block
EKG11100 PL/I function block for EKG_ConnectLong
EKG11101 PL/I function block for EKG_Connect
EKG11102 PL/I function block for EKG_Disconnect
EKG11201 PL/I function block for EKG_Checkpoint
EKG11202 PL/I function block for EKG_Stop
EKG11302 PL/I function block for EKG_CreateClass
EKG11303 PL/I function block for EKG_DeleteClass
EKG11304 PL/I function block for EKG_CreateField

© Copyright IBM Corp. 1997, 2015 181

Name Use
EKG11305 PL/I function block for EKG_DeleteField
EKG11306 PL/I function block for EKG_CreateSubfield
EKG11307 PL/I function block for EKG_DeleteSubfield
EKG11401 PL/I function block for EKG_ChangeField
EKG11402 PL/I function block for EKG_SwapField
EKG11403 PL/I function block for EKG_ChangeSubfield
EKG11404 PL/I function block for EKG_SwapSubfield
EKG11405 PL/I function block for EKG_LinkTrigger
EKG11406 PL/I function block for EKG_LinkNoTrigger
EKG11407 PL/I function block for EKG_UnLinkTrigger
EKG11408 PL/I function block for EKG_UnLinkNoTrigger
EKG11409 PL/I function block for EKG_CreateObject
EKG11410 PL/I function block for EKG_DeleteObject
EKG11411 PL/I function block for EKG_RevertToInherited
EKG11412 PL/I function block for EKG_AddNotifySubscription
EKG11413 PL/I function block for EKG_DeleteNotifySubscription
EKG11415 PL/I function block for EKG_TriggerNamedMethod
EKG11416 PL/I function block for EKG_TriggerOIMethod
EKG11417 PL/I add object deletion notification subscription
EKG11418 PL/I delete object deletion notification subscription
EKG11501 PL/I function block for EKG_QueryField
EKG11502 PL/I function block for EKG_QuerySubfield
EKG11503 PL/I function block for EKG_QueryEntityStructure
EKG11504 PL/I function block for EKG_QueryFieldStructure
EKG11505 PL/I function block for EKG_QueryFieldID
EKG11506 PL/I function block for EKG_QueryFieldName
EKG11507 PL/I function block for EKG_QueryNotifyQueue
EKG11508 PL/I query multiple subfields
EKG11509 PL/I locate
EKG11510 PL/I function block for EKG_QueryResponseBlockOverflow
EKG11600 PL/I function block for EKG_ExecuteFunctionList
EKG12001 PL/I function block for EKG_QueryFunctionBlockContents
EKG12002 PL/I function block for EKG_LockObjectList
EKG12003 PL/I function block for EKG_UnlockAll
EKG12004 PL/I function block for EKG_ResponseBlock
EKG12005 PL/I function block for EKG_SendNotification
EKG12006 PL/I function block for EKG_SetReturnCode
EKG12007 PL/I function block for EKG_WhereAmI
EKG12008 PL/I function block for EKG_OutputToLog
EKG12009 PL/I function block for EKG_MessageTriggeredAction
EKG12011 PL/I function block for EKG_QueryObjectName
EKG21415 PL/I response block for EKG_TriggerNamedMethod
EKG21416 PL/I response block for EKG_TriggerOIMethod
EKG21501 PL/I response block for EKG_QueryField
EKG21502 PL/I response block for EKG_QuerySubfield
EKG21503 PL/I response block for EKG_QueryEntityStructure
EKG21504 PL/I response block for EKG_QueryFieldStructure
EKG21505 PL/I response block for EKG_QueryFieldID
EKG21506 PL/I response block for EKG_QueryFieldName
EKG21507 PL/I response block for EKG_QueryNotifyQueue
EKG21508 PL/I query multiple subfields
EKG21509 PL/I locate
EKG21510 PL/I response block for EKG_QueryResponseBlockOverflow
EKG22001 PL/I response block for EKG_QueryFunctionBlockContents

182 Customization Guide

Name Use
EKG22007 PL/I response block for EKG_WhereAmI
EKG22011 PL/I response block for EKG_QueryObjectName
EKG3ACCB C/370™ RODM access block
EKG3CADT C/370 RODM abstract data types
EKG3CEEP C/370 external entry point declaration
EKG3CINC C/370 include statements
EKG3CLOG C/370 log record definitions
EKG3ENTB C/370 RODM entity access information block
EKG3FLDB C/370 RODM field access information block
EKG3TRAB C/370 RODM transaction information block
EKG31100 C/370 function block for EKG_ConnectLong
EKG31101 C/370 function block for EKG_Connect
EKG31102 C/370 function block for EKG_Disconnect
EKG31201 C/370 function block for EKG_Checkpoint
EKG31202 C/370 function block for EKG_Stop
EKG31302 C/370 function block for EKG_CreateClass
EKG31303 C/370 function block for EKG_DeleteClass
EKG31304 C/370 function block for EKG_CreateField
EKG31305 C/370 function block for EKG_DeleteField
EKG31306 C/370 function block for EKG_CreateSubfield
EKG31307 C/370 function block for EKG_DeleteSubfield
EKG31401 C/370 function block for EKG_ChangeField
EKG31402 C/370 function block for EKG_SwapField
EKG31403 C/370 function block for EKG_ChangeSubfield
EKG31404 C/370 function block for EKG_SwapSubfield
EKG31405 C/370 function block for EKG_LinkTrigger
EKG31406 C/370 function block for EKG_LinkNoTrigger
EKG31407 C/370 function block for EKG_UnLinkTrigger
EKG31408 C/370 function block for EKG_UnLinkNoTrigger
EKG31409 C/370 function block for EKG_CreateObject
EKG31410 C/370 function block for EKG_DeleteObject
EKG31411 C/370 function block for EKG_RevertToInherited
EKG31412 C/370 function block for EKG_AddNotifySubscription
EKG31413 C/370 function block for EKG_DeleteNotifySubscription
EKG31415 C/370 function block for EKG_TriggerNamedMethod
EKG31416 C/370 function block for EKG_TriggerOIMethod
EKG31417 C/370 add object deletion notification subscription
EKG31418 C/370 delete object deletion notification subscription
EKG31501 C/370 function block for EKG_QueryField
EKG31502 C/370 function block for EKG_QuerySubfield
EKG31503 C/370 function block for EKG_QueryEntityStructure
EKG31504 C/370 function block for EKG_QueryFieldStructure
EKG31505 C/370 function block for EKG_QueryFieldID
EKG31506 C/370 function block for EKG_QueryFieldName
EKG31507 C/370 function block for EKG_QueryNotifyQueue
EKG31508 C/370 query multiple subfields
EKG31509 C/370 locate
EKG31510 C/370 function block for EKG_QueryResponseBlockOverflow
EKG31600 C/370 function block for EKG_ExecuteFunctionList
EKG32001 C/370 function block for EKG_QueryFunctionBlockContents
EKG32002 C/370 function block for EKG_LockObjectList
EKG32003 C/370 function block for EKG_UnlockAll
EKG32004 C/370 function block for EKG_ResponseBlock
EKG32005 C/370 function block for EKG_SendNotification

Appendix B. NetView Macros and Control Blocks 183

Name Use
EKG32006 C/370 function block for EKG_SetReturnCode
EKG32007 C/370 function block for EKG_WhereAmI
EKG32008 C/370 function block for EKG_OutputToLog
EKG32009 C/370 function block for EKG_MessageTriggeredAction
EKG32011 C/370 function block for EKG_QueryObjectName
EKG41415 C/370 response block for EKG_TriggerNamedMethod
EKG41416 C/370 response block for EKG_TriggerOIMethod
EKG41501 C/370 response block for EKG_QueryField
EKG41502 C/370 response block for EKG_QuerySubfield
EKG41503 C/370 response block for EKG_QueryEntityStructure
EKG41504 C/370 response block for EKG_QueryFieldStructure
EKG41505 C/370 response block for EKG_QueryFieldID
EKG41506 C/370 response block for EKG_QueryFieldName
EKG41507 C/370 response block for EKG_QueryNotifyQueue
EKG41508 C/370 query multiple subfields
EKG41509 C/370 locate
EKG41510 C/370 response block for EKG_QueryResponseBlockOverflow
EKG42001 C/370 response block for EKG_QueryFunctionBlockContents
EKG42007 C/370 response block for EKG_WhereAmI
EKG42011 C/370 response block for EKG_QueryObjectName
FLBTREM C/370 exception view update parameter structure
FLBTRSM C/370 status change parameter structure

The following macros are provided as general-use programming interfaces.

Name Use
CNMALTDATA Alter data on a queue
CNMAUTOTAB Invoke automation table
CNMCLOSMEM Close NetView partitioned data set
CNMCODE2TXT Code point translation
CNMCOMMAND Invoke NetView commands
CNMCOPYSTR Copy storage
CNMETINIT Initialize the server support
CNMETNEXT Get next transaction request
CNMETQUIESCE Quiesce the database
CNMETREADY Ready for next transaction
CNMETRPARM Get transaction request
CNMETTERM Terminate the Server support
CNMETWAIT Wait for a transaction request
CNMGETATTR Query message attributes
CNMGETDATA Data queue manipulation
CNMGETPARM Get transaction reply parameters
CNMHREGIST High performance transport application registration
CNMHSENDMU Send high performance message unit
CNMI CNMI access under a DST
CNMINFOC Query NetView character information
CNMINFOI Query NetView integer information
CNMKEYIO Keyed file access under a DST
CNMLOCK Control a lock
CNMNAMESTR Named storage
CNMOPENMEM Open NetView partitioned data set
CNMOPREP Resource object data manager
CNMPRSMDB Process message data block
CNMREADMEM Read NetView partitioned data set

184 Customization Guide

Name Use
CNMREGIST Application registration
CNMSCOPECK Check command authorization for security
CNMSENDMSG Send message or command
CNMSENDMU Send message unit
CNMSENDSTR Send transaction replay to NetView requester
CNMSENDTR Send transaction request to database server
CNMSSCAN Parse or convert character string
CNMSTRCELL Storage cell
CNMSTRPOOL Storage pool
CNMVARPOOL Set or retrieve variables
DUIFEDST Assembler macro

Product-Sensitive Programming Interfaces
The following control blocks are provided as product-sensitive programming
interfaces.

Name Use
AAUTISAW Internal session awareness record
AAUTLOGR Structure map for NetView SMF log record
BNJTBRF Batch record format table
DSIAIFRO Automation internal function request object extension vector
DSIASYPN Asynchronous panel parameter list
DSICBH Control block header
DSICWB Command work block
DSIDSB Data services block
DSIDSRB Data services request block
DSIDTR Data transport Request block
DSIELB External logging block
DSIID NetView level identifier
DSIIFR Internal function request
DSILOGDS NetView log DSECT
DSIMVT Main vector table
DSIPDB Parse descriptor block
DSISCE System command entry
DSISCT System command table (include only)
DSISVL Service routine vector list (include only)
DSISWB Service work block
DSITECBR Branch table of ECB processor load module
DSITIB Task information block
DSITVB Task vector block
DSIUSE Installation exit parameter list

The following macros are provided as product-sensitive programming interfaces.

Name Use
DSIAUTO Automation services
DSIBAM Build automation message
DSIBAMKW Build automation message keyword
DSICBS Control block services
DSICES Command entry services
DSICVTHE Convert to hex
DSIC2T Translate alert code point to text

Appendix B. NetView Macros and Control Blocks 185

Name Use
DSIDATIM Date and time
DSIDEL Delete user-defined module
DSIDKS Disk services
DSIFIND Find long-running command storage
DSIFRE Free storage
DSIFREBS Free buffer structure service
DSIGET Get storage
DSIGETDS Retrieve messages
DSIHREGS High-performance registration
DSIHSNDS High-performance send
DSIKVS Keyword/value services
DSILCS Obtain/release control blocks
DSILOD Load user-defined module
DSIMBS Message buffer services
DSIMDS Message definition services
DSIMMDBS Message data block service
DSIMQS Message queuing services
DSINOR Resource object data manager d
DSIPAS Parameter/alias services
DSIPOP Remove long-running command
DSIPOS ECB post services
DSIPRS Parsing services
DSIPSS Presentation services
DSIPUSH Establish long-running command
DSIQOS Query operator services
DSIQRS Query resource services
DSIRDS Resource definition services
DSIRXCOM Access REXX variables (VM only)
DSIRXEBS Get an EVALBLOK
DSISRCMV Search for subvector/subfield
DSISYS Operating system indicator
DSITECBS Manage a dynamic ECB list for DSTs
DSIVARS Global Variable Access
DSIWAT ECB wait services
DSIWCS Write console services
DSIWLS Write log services
DSIZCSMS CNM data services
DSIZVSMS VSAM data services
DSI6REGS Registration services
DSI6SNDS Send services

186 Customization Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement might not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web

© Copyright IBM Corp. 1997, 2015 187

sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
2Z4A/101
11400 Burnet Road
Austin, TX 78758
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

188 Customization Guide

Programming Interfaces
This publication documents intended Programming Interfaces that allow the
customer to write programs to obtain the services of Tivoli NetView for z/OS.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at http://www.ibm.com/legal/copytrade.shtml .

Adobe is a trademark of Adobe Systems Incorporated in the United States, and/or
other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other product and service names might be trademarks of IBM or other companies.

Privacy policy considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, See IBM’s Privacy Policy at http://www.ibm.com/privacy and
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Notices 189

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

190 Customization Guide

Index

Special characters
&CGLOBAL 44
&CUR 35, 57
&SUPPCHAR 49
&TGLOBAL 44
&VIEWAID 50
&VIEWCOLS 52
&VIEWCURCOL 50
&VIEWCURROW 50
&VIEWICCOL 50
&VIEWICROW 50
&VIEWROWS 52
&WAIT 108

A
access method 6, 14
accessibility xiii
ACTION command list 82, 86
ACTION statement, SCRNFMT 28
activate screen format definition 27
actual panel name

adding 80
changing panel text 80

adding functions 3
AID (attention identification) information 50
alert adapter service

Event/Automation Service 109
alert-to-trap service

Event/Automation Service 110
alerts

description 1, 92
generic

alert table supplied with the NetView program 92
build panel 93
description 92
modify 77
NMVT 91
recommended action code point 84
record 77
reference documentation, table 5
sample record 93

message 77
nongeneric

messages 81
migration purposes 91
modify 77

sender 86
user-defined 91, 92

Alerts-Dynamic panel 81
Alerts-History panel 77, 81
Alerts-Static panel 77, 81
alias names

definition 1
reference documentation, table 5

alias panel name
adding 80
determining 77, 78

application management instrumentation 167
application, performance-critical 14

APPLID NetView control variable 44
assembled command procedure 14
attribute

symbols 39
variables 40

audible alarm 86
automated operations

definition 1
NetView automation 1

automation table
setting message color and highlighting 30
VPDXDOM command list 106, 107

autotask 108

B
BGNSESS FLSCN command 46
block ID 78
BNJALxxx sample table 77
BNJBLKID sample table 77
BNJDNUMB 83
BNJDSERV task 104
BNJPNL2 DD statement 85
BNJPNL2 definition statement 103
BNJPROMP (prompt highlight token table) 90
BNJRESTY member 103
BNJwwwww code point members 85
books

see publications ix
BROWSE command, view help 66

C
CANCEL option, UNIQUE command 49
change bars xv
class definition statement files 123
CMD command 47
CMD HIGH 57
CMDLINE statement, SCRNFMT 30
CNM944I message 43
CNMI service 6, 14
CNMKEYS, modifying 26
CNMPNL1 DD statement 70
CNMS1101 sample 60
CNMSRESP source panel example 61
CNMSTYLE 167
CNMVARS 44
code point

alert description (BNJ92UTB) 100
description 1
detail data (BNJ82UTB) 100
failure cause (BNJ96UTB) 100
install cause (BNJ95UTB) 100
probable cause (BNJ93UTB) 100
recommended action (BNJ81UTB) 85, 100
user cause (BNJ94UTB) 100

code, VIEW command 35
color and highlighting fields, control 38
color buffer 87, 90

© Copyright IBM Corp. 1997, 2015 191

color maps
BNJOVERW 87
hardware monitor panel 177
list 177
map element 87
repetition factor option 89
repetition map element 89
sample 87
variable row 89

color, panel text 31
column headings, NCCF panel

control tags, PREFIX and NOPREFIX statements 28
customizing, COLUMNHEAD statement 28

COLUMNHEAD statement, SCRNFMT 28
command area, NCCF panel 30
command buffers 10
command entry indicator, NCCF panel 30
command facility console 104
command facility panel attributes 27
command facility panel, customizing 27
command help

copying 66
locating source files 65
modifying 70
storing 70

command line 56
command lists

error message 106
modifying 36
variable 7, 34
writing 36

command procedure, issuing 46
command processor, interface 10, 12
commands

data services 11
immediate 10
long-running 10

COMPAT option
definition 35

compiled language 14
compound symbols in source panels 45
concatenated user library 92
confirmed alert adapter service

Event/Automation Service 109
confirmed message adapter service

Event/Automation Service 109
control blocks

access 14
general-use 181
product-sensitive 181

control program text title 100
control variable 43, 44
conventions

typeface xv
CREATE option 106
current date area, NCCF panel 28
customization, areas 1
customizing 27

CNMKEYS 26
immediate message line 25
NCCF panel 27

CMDLINE statement 30
column headings 28
COLUMNHEAD statement 28
command area 30
command entry indicator 30
current date area 28

customizing (continued)
NCCF panel (continued)

domain id area 28
held and action message area 29
held messages, warning 29
HELD, ACTION, NORMAL, and NQMAX

statements 28
HOLDPCNT statements 29
IMDAREA statement 30
immediate message area 30
INDENT and MLINDENT statements 29
indentation 29
LASTLINE statement 30
limitations 27
lock/unlock indicator 30
LOCKIND statement 30
operator id area 28
output area 28
separator line 30
status area 28
time area 28
title area 28
TITLE statement 28
TITLEDATE statement 28
TITLEDOMID statement 28
TITLEOPID statement 28
TITLESTAT statement 28
TITLETIME statement 28

PF keys 25
VPD command list provided with the NetView

program 108
customizing hardware monitor displayed data

alert message 77, 81
color and highlighting

modifying color map 87
prompt highlight token 90
selecting color map 87

modifying hardware monitor panel
actual, alias panel name 77
adding actual or alias name 80
changing alias to actual 80
changing panel text 80
deleting actual or alias name 80
determining panel name 77

overlaying recommended action number 82
user interface

BNJDNUMB 83
BNJwwwww 85

using NMVT support for user-written programming
adding or modifying resource type 103
building generic alert panel 93
modifying generic code point tables 100
table format 100

D
data file 7
data services task (DST) subtask 9
DCE (data communication equipment) 105, 106
DEFAULTS command, activate screen format definition 27
designing functions

choosing languages
introduction 14
logging 16
performance 14

identifying conceptual component
adding optional task 9

192 Customization Guide

designing functions (continued)
identifying conceptual component (continued)

collecting data 5
data file 6
data storage and record 7
defining transaction 11
exit and command 11
installation exit 5
operator command and message 6
operator presentation 7
service routine 6
task structure 7

designing HTML files
web application server 175

detail data code point 92
direct NNT session 107
direct OST session 107
directory list of panel names 78
directory names, notation xv
displayed data, hardware monitor 77
displaying

special attributes 40
documentation for customizing 3
domain id area, NCCF panel 28
DRD (dynamic reconfiguration deck) 107
DSIAMIAT 167
DSIAMII 168
DSIELTSK 107
DSIMDS macro 82, 92
DSIPOP 49
DSIPUSH 47, 49
DST (data services task) subtask 9
dynamic reconfiguration deck (DRD) 107

E
E/AS 109

configuration files 118
defaults 111
overview 109
starting 110

education
see Tivoli technical training xiii

embed flag 103
END record 106, 107
environment functions 17
environment variables, notation xv
event detail panel 77, 78, 81
event receiver service

Event/Automation Service 110
Event/Automation Service 109

configuration files 118
defaults 111
overview 109
starting 110

exit routine, installation 14
exit, installation 5
EXTEND option

definition 36

F
filter

definition 1
hardware monitor 1
messages 1

filter (continued)
reference documentation, table 5

focal point VPD collection 107
full-screen panel, display 31
functional extension 7
functions, design and implement 1

G
GENALERT command 93
general-use programming interfaces 181
generic alert code point 77
generic alert record 77
global variable 44, 59
GLOBALV 44
GO command 16
group control system 7

H
HALT subroutine 49
hardware monitor panels

altering text
color 86
highlighting 86
intensity 86

audible alarm 86
determining a panel name 77
displayed data 77
displays, list 177
mapping NMVT 91
modifying panel 77
Recommended Action panel 82

hardware product identifier 84
held and action message area, NCCF panel 29
held messages, NCCF panel warning 29
HELD statement, SCRNFMT 28
HELPDESK, changing 69
HELPMAP, searching 70
hierarchy complete 96
highlight fields, control color 38
highlight panel text 31
HOLDPCNT statement, SCRNFMT 29
HOLDWARN statement, SCRNFMT 29

I
IBM Tivoli Enterprise Console

customizing 170
IEBUPDTE utility 81
IEHPROGM utility 80
IHSAEVNT 110
IMDAREA statement, SCRNFMT 30
immediate message area, NCCF panel 30
immediate message line, customizing 25
INDENT statement, SCRNFMT 29
indent, NCCF panel 29
INITAMI 169, 173
INITAMON 173
input field 55
INPUT keyword 50
INPUT option

definition 35
input value 35
input-capable

fields 52

Index 193

input-capable (continued)
INPUT 57
variable 50

installation exit
interface 5
programs 11
routine 5
routine. 14
setting message color and highlighting 30

instrumentation 167
considerations 167
customizing 167
messages 167
starting 169

instrumentation, stopping 170, 173
inventory data, collecting 105

L
languages, choosing 14
LASTLINE statement, SCRNFMT 30
Launch Sample URL task 176
limitations

background message color, 3270 30
customizing NCCF panel 27
displaying held messages 29
NORMQMAX statement value 29
setting message default colors 28

link-edit load module name 92
links

web application portfolio, adding 175
LOADCL command 15
local variable, REXX 44
lock/unlock indicator, NCCF panel 30
LOCKIND statement, SCRNFMT 30
logging facilities 7
logging method 16

M
macros, product-sensitive 185
managing additional component 3
manuals

see publications ix
message adapter service

Event/Automation Service 109
message buffers 10
message color default value, specifying, SCRNFMT 27
message help

copying 66
locating source files 65
modifying 70
naming convention 65
storing 70

messages
color and highlighting 30
cross-reference 17
default colors 28
held and action area, NCCF panel 29
held, NCCF panel warning 29
queued for later display 29
specifying infinite queues 29

migration 91
MINOR option 47
MLINDENT statement, SCRNFMT 29

modifying
CNMKEYS 26
existing function 3
immediate message line 25
online help

command 70
message 70
procedures 66
regular 70

PF keys 25
modifying SPCS and NAM command lists

customization considerations 108
NAM command list 105
vital product data (VPD) collection

focal point NetView 107
single NetView domain 106
single physical unit 106

most recent events panel
changing Event Description: Probable Cause text 81
identifying resources 77

MSG option
dynamic update capabilities 59
RESOURCE command output usage 60

MVS MPF table, setting message color and highlighting 30

N
named variable 47
naming convention

message help 65
naming online help 70
National Language Support

kanji feature 2
message translations 2
reference documentation, table 5

NCCF panel, customizing 27
NetView

automation table 106, 107
component, definition 47
log 43
panel library 92

NetView command facility panel 27
network

log 16
management data 5
qualified procedure correlation identifier 100

network asset management (NAM) command list
modifying 108
VPDACT command list 106
VPDDCE command list 106
VPDLOGC command list 106
VPDPU command list 105
VPDXDOM command list 106

new management function 3
new online help

creating 69
storing 70
structuring conventions 69

NMVT (network management vector transport) 91
NOINPUT option

creating rollable components 47
definition 35
displaying online help panels 36
return command line input 56

NOMSG option 37
nongeneric alerts 91
NOPREFIX statement, SCRNFMT 28

194 Customization Guide

NORMAL statement, SCRNFMT 28
NORMQMAX statement, SCRNFMT 28

extreme value, calling attention to 29
minimum value 29
OST-NNT cross-domain sessions 29
printers 29
queueing messages for later display 29
specifying infinite queues 29
values 29

notation
environment variables xv
path names xv
typeface xv

O
online help

copying 66
creating new help 69
highlighting attributes 66
locating source files 65
modifying

command help 70
procedure 66
regular help 70
source 69, 70

naming 70
organization 65
source 66
store procedures 70
writing 69

online help panels
color attributes 39
highlighting attributes 39

online publications
accessing xii

operator command 6
operator command interface 47
operator control and security

command authorization 2
reference documentation, table 5
span of control 2

operator id area, NCCF panel 28
operator interface 7
OPID NetView control variable 43, 44
OPT (optional) subtask 9
OPT task, adding 14
output area, NCCF panel 28
OVERRIDE command, activate screen format definition 27
overwrite global variable 44

P
panel

data stream 70
definition statement 43
definition, using with VIEW 31
hardware monitor 77
partitioned data set 65
record length 69
variables 40

partial command, predefining 57
path names, notation xv
PAUSE command 16
performance 14
PF keys, customizing 25

PF keys, using with VIEW 57
physical unit (PU) 105
portfolio

links, adding 175
tasks, adding 175

PREFIX statement, SCRNFMT 28
preload

NetView command list. 15
REXX command list 15

probable cause code point 92
product-sensitive

control blocks 181
macros 185

product-set identification (PSID) 83
program function keys, using with VIEW 57
programming interfaces

general-use 181
product-sensitive 185

PROMOTE option, UNIQUE command 49
prompt highlight token table 90
PSID (product-set identification) 83
publications

accessing online xii
NetView for z/OS ix
ordering xii

Q
queueing commands 47

R
recommended action number 82
Recommended Action panel 77, 78
record filters 1
record format, building 108
referencing commands

web application server 175
referencing files

web application server 175
regular help panel 65, 70
repetition factor option 89
repetition map element 89
REQUEST/REPLY PSID architecture 105
RESDYN command list output example 61
RESET command 108
RESOURCE command 60
resource type

adding 103
modifying 103

return codes 37, 38, 48, 50
revision codes xv
REXX function CGI

web application server 176
REXX programming language, local variable 44
REXX-generated HTML

web application server 176
ROLL command 46
roll group 46, 49
rollable component

creating 47
REXX command procedure that drives 54

Index 195

S
screen format definition (SCRNFMT)

command facility panel attributes 27
customizable fields

COLUMNHEAD line 28
command area 30
command entry indicator 30
current date 28
domain identifier 28
held and action message area 29
immediate message area 30
indentation 29
lock/unlock indicator 30
operator identifier 28
output area 28
separator line 30
system states 28
time of last display 28
title area 28

message color default value 27
SCRNFMT (screen format definition)

command facility panel attributes 27
customizable fields

COLUMNHEAD line 28
command area 30
command entry indicator 30
current date 28
domain identifier 28
held and action message area 29
immediate message area 30
indentation 29
lock/unlock indicator 30
operator identifier 28
output area 28
separator line 30
system states 28
time of last display 28
title area 28

message color default value 27
SCRNFMT statements

ACTION 28
CMDLINE 30
COLUMNHEAD 28
HELD 28
HOLDPCNT 29
HOLDWARN 29
IMDAREA 30
INDENT 29
LASTLINE 30
LOCKIND 30
MLINDENT 29
NOPREFIX 28
NORMAL 28
NORMQMAX 28
PREFIX 28
TITLE 28
TITLEDATE 28
TITLEDOMID 28
TITLEOPID 28
TITLESTAT 28
TITLETIME 28

secondary extent 69, 85
sense code descriptions, customizing 73
separator line, NCCF panel 30
sequential data set 70
sequential logging

definition 2

sequential logging (continued)
reference documentation, table 5

service xiii
service level reporter (SLR) 108
service management connect xiii
serviceable component identifier 84
session monitor data

definition 2
performance classes 2
reference documentation, table 5
response time monitor (RTM) 2

SHOWCODE command list 38
SMC xiii
SMF log 5
SMF logging failure 106
SMF record format, changing 108
SMF record number 108
source, help

building 69
definition 66
locating 65
modifying 70
structure 69
viewing 66

source, helps
sample panel 32

specialized disk service 6, 14
START DOMAIN command 107
START record 106, 107
START VPDTASK 107
STARTCNM NPDA 104
status area, NCCF panel 28
STOP TASK 104
storing new or modified help 70
subcommands, VIEW 57
support xiii
symbols, compound 45
system allocation 6, 14
system interface 7

T
task variable 16
task, operator station (OST) 8
tasks

web application portfolio, adding 175
TERMAMI 170
TERMAMON 173
tilde definition 56
time area, NCCF panel 28
title area, NCCF panel 28
TITLE statement, SCRNFMT 28
TITLEDATE statement, SCRNFMT 28
TITLEDOMID statement, SCRNFMT 28
TITLEOPID statement, SCRNFMT 28
TITLESTAT statement, SCRNFMT 28
TITLETIME statement, SCRNFMT 28
Tivoli

training, technical xiii
user groups xiii

Tivoli Enterprise Console
customizing 170

Tivoli Software Information Center xii
training, Tivoli technical xiii
transaction program

command processor 11
installation exit 11

196 Customization Guide

trap-to-alert 128
trap-to-alert service

Event/Automation Service 110
typeface conventions xv

U
UNIQUE command 35, 48
UPPER command 48
user groups

NetView, on Yahoo xiv
Tivoli xiii

user interface
BNJDNUMB 83
BNJwwwww 85

user subtask, writing 14
user table, defining

BNJ81UTB 100
BNJ82UTB 100
BNJ92UTB 100
BNJ93UTB 100
BNJ94UTB 100
BNJ95UTB 100
BNJ96UTB 100
sample 102

user-defined alert
generic 92
nongeneric 91

user-written functions
definition 2
reference documentation, table 5

V
variable row placement option 89
variables, compound 45
variables, notation for xv
vector transport, network management (NMVT) 91
VIEW command processor

attribute definition 39
code 35
COMPAT option 35
creating rollable components 47
definition statement 43
displaying error messages 38
displaying return codes 38
displaying variables in source panels 43
dynamic update capability 59
EXTEND option 36
finding global variables 43
full-screen input capability 50
global variable 44
INPUT option 35
input value 35
issuing from command procedure 46
managing command lines 61
managing PF keys 61
message data 36
MSG option 59
NOINPUT option 35
panel definition

attribute symbol 39
attribute variable 40
controlling color 38
controlling highlighting 38

return code 37

VIEW command processor (continued)
return command line input 56
subcommands 57
using 31
using PF keys 57
using SHOWCODE command list 38
using UNIQUE command 48
using UPPER command 48
VIEWAID variable 52

VIEW command, using 31
view filters 1
VIEWAID variable 51, 52
VIEWCOLS variable 52
VIEWCURCOL variable 50
VIEWCURROW variable 50
VIEWICCOL variable 50, 51
VIEWICROW variable 50, 51
VIEWROWS variable 52
vital product data (VPD), definition 105
VPD command 106, 108
VPDACT command 106
VPDALL command 106
VPDDCE command entry 107
VPDLOGC command list 106, 107
VPDPU command entry 107
VPDTASK 106
VPDXDOM command list 106, 107
VSAM data service 6, 14
VTAM ACB Monitor

starting 173
VTAM CNMI 5
VTAM configuration member in VTAMLST 106, 107
VTAMLST 106

W
web application

links, adding 175
tasks, adding 175

web application server
designing HTML files 175
referencing files 175
REXX function CGI 176
REXX-generated HTML 176

web sites
launching from web application 176

X
XVAR 33, 46

Y
Yahoo user group, NetView xiv

Index 197

198 Customization Guide

IBM®

Printed in USA

SC27-2849-04

	Contents
	Figures
	About this publication
	Intended audience
	Publications
	IBM Tivoli NetView for z/OS library
	Related publications
	Accessing terminology online
	Using NetView for z/OS online help
	Accessing publications online
	Ordering publications

	Accessibility
	Service Management Connect
	Tivoli technical training
	Tivoli user groups
	Downloads
	Support information
	Conventions used in this publication
	Revision codes
	Typeface conventions
	Operating system-dependent variables and paths
	Syntax diagrams

	Chapter 1. Designing Functions
	Customization Areas
	Functions to Consider before Making Modifications
	Finding Customization Information
	Collecting Data
	Installation Exits
	Service Routines
	Data Files
	Operator Commands and Messages

	Data Storage and Recording
	Operator Presentation

	Tasks
	NetView Program as a System Application Program
	NetView Program Tasks
	Program Activity within a Task
	Queuing Work to NetView Program Tasks
	Message and Command Buffers
	Immediate Commands
	Long-Running Commands
	Data Services Commands

	Defining User-Written Programs on the Host: Exits and Commands
	Installation Exit Programs
	Command Processors and Command Lists

	Adding Optional Tasks to the NetView Program
	Choosing a Language
	Input and Output
	Performance
	Stability
	Testing
	Speed of Implementation
	REXX Versus the NetView Command List Language
	Language Choices by Function
	Logging
	Cross-Reference for Message and Environment Functions

	Customizing PF Keys and Immediate Message Line
	Modifying CNMKEYS

	Chapter 2. Customizing the NetView Command Facility Panel
	Using a Screen Format Definition
	Screen Format Definition Statements
	Message Color and Highlighting

	Chapter 3. Using the VIEW Command
	Creating Full-Screen Panels
	General Help Fields

	Coding the VIEW Command
	Return Codes from VIEW and BROWSE
	Displaying VIEW Return Codes with SHOWCODE
	Controlling Color and Highlighting of Fields
	Attribute Symbols
	Displaying Special Attributes
	Using the + Attribute
	Using the $ and the @ Attributes

	Attribute Variables

	Displaying Variables in Source Panels
	Compound Symbols
	Implementation Maximum

	Issuing Commands from Command Procedures
	Creating a Rollable Component with VIEW
	Using the UPPER Command
	Using the UNIQUE Command

	Full-Screen Input Capabilities
	Returning Command Line Input
	Using PF Keys and Subcommands with VIEW
	Using PF Keys and Subcommands with the NOINPUT Option
	Using PF Keys and Subcommands with the INPUT Option
	Using Settable PF Keys

	Dynamic Update Capabilities
	Sample of Panel Updating
	Changing Colors in Browse

	Chapter 4. Modifying and Creating Online Help Information
	Locating Help Source Files
	View-Based Help
	Window-Based Help

	Copying and Changing Help Source Files
	Storing Help Source Files
	HELPMAP Facility
	Displaying New Help Panels

	Chapter 5. Customizing Session Monitor Sense Descriptions
	Session Monitor Sense Codes
	Examples

	Chapter 6. Customizing Hardware Monitor Displayed Data
	Modifying Hardware Monitor Nongeneric Panels
	Determining a Panel Name
	Changing Panel Text
	Changing from Alias to Actual
	Deleting an Actual or Alias
	Adding an Actual or Alias

	Nongeneric Alert Messages
	Using the ACTION Command List
	Overlaying Recommended Action Numbers
	Modifying BNJDNUMB, BNJDNAME, and BNJwwwww
	BNJDNUMB
	BNJDNAME
	BNJwwwww

	Changing Color and Highlighting for Hardware Monitor Panels
	Selecting the Color Map
	Modifying the Color Map
	Prompt Highlight Tokens

	Using NMVT Support for User-Written Programming
	User-Defined Alerts (Nongeneric)
	NMVT-to-Panel ID Mapping
	Panel Formats

	User-Defined Alerts (Generic)
	Using the GENALERT Command

	Building Generic Alert Panels
	Alerts-Dynamic Panel
	Recommended Action for Selected Event Panel
	Event Detail Panel
	Modifying Generic Code Point Tables
	Table Formats
	Use of %INCLUDE Statements
	Example of BNJ92TBL Code Points Table
	Example of BNJ94TBL Code Points Table
	Activating the Modified Code Point Tables

	Adding or Modifying Resource Types

	Chapter 7. Modifying Network Asset Management Command Lists
	VPD Collection from a Single PU
	VPD Collection from a Single NetView Domain
	Focal Point VPD Collection
	Customization Considerations

	Chapter 8. Customizing the Event/Automation Service
	Event/Automation Service: Overview
	Starting the Event/Automation Service
	Customizing the Initialization of the Event/Automation Service
	Defaults for Configurable Settings
	Customizing the Event/Automation Startup Parameters
	Customizing the Event/Automation Service Configuration Files
	Event/Automation Service Output
	Event/Automation Service Output Log Names
	Types of Event/Automation Service Output Data
	Format of Event/Automation Service Output Data
	Customizing Alert and Message Routing from the NetView program
	Running More Than One Event/Automation Service

	Advanced Customization - Translating Data
	Class Definition Statement Files
	Encoding Incoming Event Data
	Alert Adapter Service, Confirmed Alert Adapter Service, and Alert-to-Trap Service Data Encoding
	Alert-to-Trap Service Data Encoding
	Trap-to-Alert Service Data Encoding
	Event Receiver Service Data Encoding
	SELECT Segment of a Class Definition Statement
	FETCH Segment of a Class Definition Statement
	MAP Segment of a Class Definition Statement
	MAP_DEFAULT Section of the Class Definition Statement Files

	Message Format Files
	Encoding Incoming Event Data
	Format Specifications
	Map Rules
	%INCLUDE Statements

	Event Receiver Post-CDS Processing
	Input Attribute List
	Output Pseudo Event
	Pseudo Event Class name
	NMVT_TYPE event attribute
	SV event attribute
	Disabling Hexadecimal String Translation
	Using Attribute List Data in the Output Subvector
	Automatic Subvector/Subfield Length Calculation
	BUILD_SV31LIST Event Attribute
	CONTINUE Slot
	SF21 Slot
	Matching Multiple CDSs to Create the Pseudo Event
	One-Pass Method
	Multiple-Pass Method
	Building the NMVT
	Building the SV 31s Containing the Original Event
	Overriding the SF21 Codepoint
	Alert or Resolve
	Adding User Subvectors
	Calculating the AlertID for SV 92
	Example

	Translating ASCII Text Data
	Translating SNMP Non-String Data Types

	Trap-to-Alert Post-CDS Processing
	Advanced Customization - Trap-to-Alert Forwarding Daemon
	Detailed Example for Trap-to-Alert Conversion

	Alert-to-Trap Post-CDS Processing

	Chapter 9. NetView Instrumentation
	Considerations
	Customization
	Starting and Stopping Instrumentation
	Customizing the IBM Tivoli Enterprise Console
	ACB Monitor Customization
	Parts
	Defining a Focal Point
	Defining an Entry Point
	Starting the VTAM ACB Monitor
	Stopping the VTAM ACB Monitor

	Chapter 10. Designing HTML Files for the NetView Web Server
	Referencing Files and Commands
	Understanding the Base URL
	Referencing Workstation Files on the Web Application Server
	Referencing NetView Commands

	Adding Tasks and Links to the Portfolio
	Using REXX to Generate HTML

	Appendix A. Color Maps for Hardware Monitor Panels
	Appendix B. NetView Macros and Control Blocks
	General-Use Programming Interface Control Blocks and Include Files
	Product-Sensitive Programming Interfaces

	Notices
	Programming Interfaces
	Trademarks
	Privacy policy considerations

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

